[pageLogInLogOut]

#Research & Development

The VR glove from the 3D printer

Mm-size hydraulically amplified electrostatic acutators provide a sense of touch and texture (left). High force electrostatic clutch actuators, that can block finger joints make virtual objects feel solid (middle). Multi-layer Dielectric-Elastomer-Actuator for active sizing of the glove and local compression (right). Illustration: Herbert Shea, EPFL (2021) © 2022 Empa
Together with EPFL and ETH Zurich colleagues, an Empa team is developing next-generation VR gloves that will make virtual worlds tangible. The glove is to be tailored to each user and capable of being produced largely automatically – using a 3D printing process.

Research sometimes needs a sacrifice. Empa researcher Patrick Danner has just made one – and filmed it. "When I applied a good 2000 volts to the sample, it caught fire," he reports drily in the debriefing. The mishap is clearly visible in his cell phone video: First it smokes, then flames erupt from the experimentally created polymer. "Hopefully, you were still able to save a piece of it," counters Dorina Opris, head of the "Functional Polymeric Materials" research group. A piece of evidence is important to learn from the result and draw conclusions.

The desired electroactive polymer should have a consistency similar to hand cream so that the artificial muscles can be produced automatically in a 3D printer. Image: Empa
The desired electroactive polymer should have a consistency similar to hand cream so that the artificial muscles can be produced automatically in a 3D printer. Image: Empa


With their research on electroactive polymers, Dorina Opris and Patrick Danner are part of a large-scale project called "Manufhaptics". The goal of the four-year project, led by Herbert Shea of the Soft Transducers Lab at EPFL, is a glove that makes virtual worlds tangible. Crucially, all of the glove's components, which exert various forces on the surface of the hand, are to be producible in a 3D printer. So this is about research into new materials, with the production method being considered from the very start.

Three types of actuators

To make virtual surfaces feel real and objects tangible at the right size, the research teams from EPFL, ETH Zurich and Empa want to integrate three different types of actuators into the glove: Underneath the fingers, nubs can grow up to replicate a specific texture of a surface. In the area of the finger joints, electrostatic brakes are mounted that stiffen the glove and block the joints. This simulates larger, solid objects that offer resistance when touched. The third type of actuators that complete the virtual experience are called DEA's (Dielectric Elastomer Actuator). These DEA's are used on the back of the hand; they tighten the outer skin of the glove so that it fits perfectly at all points. During the VR experience, they can also apply pressure to the surface of the hand. The DEA's are Empa's topic.



Dorina Opris, the head of the research group, has years of experience with such electroactive polymers. "They react to electric fields and contract like a muscle," the researcher explains. "But they can also serve as a sensor, absorbing an external force and generating an electrical pulse from it. We're also thinking of using them to harvest energy locally: From movement, electricity can thus be generated anywhere."

The next-generation VR glove will make virtual worlds tangible. Illustration: Herbert Shea, EPFL (2021)
The next-generation VR glove will make virtual worlds tangible. Illustration: Herbert Shea, EPFL (2021)


The Manufhaptics project presents new challenges for Opris and her colleague Patrick Danner. "Until now, we have produced our polymers using solvents through a chemical synthesis," explains Opris. Now everything has to work without solvents: The plan is to superimpose up to 1000 fine layers from the 3D printer, always alternating between the electroactive polymer and a current-conducting layer. "Solvent has to be avoided in such a process" says Opris. Patrick Danner explains the next difficulty: The two inks needed for making the layers must have the exact right consistency to flow out of the 3D printer's nozzle. "Our project partner Jan Vermant from ETH Zurich wants something with similar properties to a hand cream. It should come out of the printer easily and then remain dimensionally stable on the base." And after that, this "creamy" layered structure still needs to crosslink into the appropriate polymer.

After a long series of tests, Patrick Danner found a promising formulation – a cream that is liquid enough and at the same time dimensionally stable, and from which electroactive polymers can be created in a single step. His colleague Tazio Pleji at ETH Zurich, a member of Jan Vermont's team, has successfully processed the material in his 3D printer into several layers – always alternating between polymer and electrode material. There are not yet 1,000 layers, but only about 10, and the artificial muscle from the 3D printer does not yet function satisfactorily.

The competition is at Harvard

But Opris and Danner are confident of mastering the task together with the printing specialists at ETH Zurich – possibly as the first team in the world. The only scientific competitors in this field are based at the renowned Harvard University in Massachusetts. "I know the colleagues there from some congresses," says Dorina Opris. "We watch very closely what they are upt to. And they're certainly watching our work, too."


More News from TEXDATA International

#Recycling / Circular Economy

textile.4U publishes special edition “Top 100 Textile Recycling Companies 2025”

With a comprehensive 176-page special edition, textile.4U is dedicating its latest issue entirely to one of the most dynamic and influential topics in today’s textile industry: textile recycling. The new issue, published exclusively in high-quality print, presents the Top 100 textile recycling companies researched and selected by TexData – organizations that already play a key role in the transition to circular textiles or are expected to have a significant impact in the near future.

#Recycling / Circular Economy

Responsible Textile Recovery Act of 2024 signed by Governor

Senator Josh Newman (D-Fullerton) is proud to announce that Senate Bill 707 (SB 707), the Responsible Textile Recovery Act of 2024, has been signed into law by the Governor of California, Gavin Newsom. This groundbreaking legislation establishes the country’s first Extended Producer Responsibility (EPR) textile recycling program, marking a significant step forward in the state’s efforts to combat waste and promote sustainability.

#Textiles & Apparel / Garment

Modtissimo promotes sustainability with 28 coordinates in the Green Circle

Modtissimo is proving more and more to be a textile and clothing show that delivers the latest innovations in the area of sustainability, with the iTechStyle Green Circle being the main showcase for companies' creations. In this 60+4 edition, taking place on 12 and 13 September, 28 coordinates will be exhibited in a section organised by CITEVE and curated by Paulo Gomes.

#Europe

The EU and Egypt team up to mobilise private sector investments at Investment Conference and sign a Memorandum of Understanding underpinning €1 billion in macro-financial assistance for Egypt

At the EU-Egypt Investment Conference, co-organised by the EU and the Government of Egypt on 29-30 June, the EU and Egypt are teaming up to intensify private sector investments in Egypt. They are also signing a Memorandum of Understanding (MoU) for the disbursement to Egypt of up to €1 billion in Macro-Financial Assistance.

More News on Research & Development

#Research & Development

The Textile Institute marks 100 years with a global expansion drive

Fresh from its highly successful 63rd conference held in Porto, Portugal, from October 7-10, The Textile Institute (TI) will celebrate a major milestone at the ITMA Asia+CITME textile machinery exhibition in Singapore later this month.

#Recycling / Circular Economy

Closing the Loop in the Textile Industry: Value Creation in the State of Brandenburg

How can the state of Brandenburg benefit from a circular textile industry? This question is addressed in the new policy paper "Closing the loop in the textile industry: Value creation in the state of Brandenburg." Based on the „TexPHB“ feasibility study funded by the Brandenburg Ministry of Climate Protection, it shows how textile waste can be integrated into new value chains.

#Research & Development

Better, faster, bio-based: Functional new Plastic alternatives

How can new bio-based and biohybrid materials with improved features be developed faster? Six Fraunhofer institutes are jointly exploring this question in the SUBI²MA flagship project, using an innovative bio-based polyamide developed by Fraunhofer researchers as a model. Its specific properties make it a promising alternative to fossil-based plastics.

#Research & Development

A smarter way to verified Chemical Compliance

Hohenstein and GoBlu Drive Innovation in Sustainable Supply Chain Management As regulatory demands, customer expectations, and sustainability goals continue to grow, the ability to manage chemical compliance and data across complex supply chains has become critical. Hohenstein and The BHive® by GoBlu are initiating a strategic partnership to enhance chemical management in the textile sector. The collaboration delivers more than just a service – it provides an integrated, future-ready solution for brands, manufacturers and suppliers seeking trusted chemical management and credible sustainability.

Latest News

#ITMA Asia + CITME Singapore 2025

KARL MAYER is launching two machines that set new standards in performance and cost-effectiveness

At this year's ITMA ASIA + CITME, KARL MAYER is exhibiting two advanced developments in the field of tricot machines. Both newcomers expand the portfolio with highly practical solutions for increased efficiency and cost-effective production – making the exhibition booth once again a focal point for more than just the warp knitting industry.

#ITMA Asia + CITME Singapore 2025

Uster presents novelties at ITMA Asia + CITME 2025

There’s news from Uster Technologies to be announced for the industry’s upcoming event in Singapore. The Uster 360Q universe is growing with new products, solutions and services. Innovation developments can also be recorded in the fields of man-made fiber testing and fabric inspection. Uster innovations address the industry’s trending topics as mill management and process control, optimization of delivered fabric quality and yield.

#Textiles & Apparel / Garment

Nike unites innovation, design and product teams to accelerate athlete-centered innovation

Nike, Jordan Brand and Converse are joining forces under a new, athlete-focused creation structure aimed at accelerating innovation and driving growth across NIKE, Inc. The new setup unites the Innovation, Design and Product teams from all three brands into a single “creation engine” that will enable greater sharing of insights, technology and manufacturing methods throughout the innovation process. This integration is part of Nike’s new Sport Offense strategy and is designed to enhance the creation of products that help athletes perform at their best.

#ITMA Asia + CITME Singapore 2025

DORNIER celebrates its anniversary at ITMA Asia + CITME

To mark its 75th anniversary, machine and plant manufacturer Lindauer DORNIER will be presenting the latest developments in its rapier and air-jet weaving machines at ITMA Asia + CITME in Singapore (Hall 2, Stand B401) from 28 to 31 October 2025. The focus will be on energy-efficient weaving technologies, new IoT solutions for networked textile production and systems for the series production of modern fibre composite components.

TOP