[pageLogInLogOut]

#Raw Materials

For the first time: Growth rate for bio-based polymers with 8 % CAGR far above overall polymer market growth

The year 2020 was a promising year for bio-based polymers: Sold out PLA in 2019 has led to the installation of increased capacities, PE and PP made from bio-based naphtha are breaking ground and future expansion for bio-based polyamides as well as for PBAT, PHAs and casein polymers is on the horizon. A lower production is only observed for bio-based PET.

Report on the global bio-based polymer market 2020 – A deep and comprehensive insight into this dynamic market

Several global brands are already expanding their feedstock portfolio to include, next to fossil-based, sources of renewable carbon, CO2, recycling and especially biomass, increasing the demand for bio-based as well as biodegradable polymers. Nevertheless, at the same time, there is a lack of support from politics, which still only promotes biofuels and bioenergy.

The new market and trend report “Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020–2025” from the international nova biopolymer expert group shows capacities and production data for all bio-based polymers in the year 2020 and a forecast for 2025. 

In 2020, the total production volume of bio-based polymers was 4.2 million tonnes, which is 1 % of the total production volume of fossil-based polymers. For the first time in many years, the CAGR is, with 8 %, significantly higher than the overall growth of polymers (3–4 %) – this is expected to continue until 2025 (Figure 1).

Overall, the global land requirement for bio-based polymers is only 0.006 % of the global agricultural land. The major biomass feedstock used for bio-based polymer production is glycerol as a biogenic by-product (37 %).

In the annually updated market report for the year 2020, a total of 17 bio-based building blocks and 17 polymers are described, in addition to comprehensive information on the capacity development from 2020 to 2025 and production data for 2020 per bio-based polymer. Furthermore, the issue includes analyses of market developments and producers per building block and polymer, so that readers can quickly gain a comprehensive overview of current developments that goes far beyond capacity and production figures. As an additional bonus the report provides a detailed, comprehensive expert view on bio-based naphtha. Finally, the deep insight into manufacturing companies introduced in 2018 has been comprehensively updated and now shows 174 detailed company profiles – from start-ups to multinational corporations.

The data published annually by European Bioplastics (http://www.european-bioplastics.org/market) are taken from the market report published by nova-Institute, but with a smaller selection of bio-based polymers.

The market and trend report was written by the international nova biopolymer expert group. The corresponding authors are from Asia, Europe and North America. The 2020 report is now available for € 3,000 at http://www.renewable-carbon.eu/publications – in addition to further market studies on renewable carbon. A short version of the report will soon be available here, also.

If you want to meet the authors and discuss the market data personally, then do not miss the nova Session: “Renewable Polymers: Production and Trends 2020-2025” on 17 February 2021, online. Register now and get one of the limited spots.

http://www.renewable-carbon.eu/events/polymer-session

Capacity increase

The increase in production capacity from 2019 to 2020 is mainly based on the expansion of polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) production in Asia and the worldwide epoxy resin production. Also, increased and new production capacities for polybutylene succinate and copolymers (PBS(X)) and bio-based polyethylene (PE) and polyurethanes (PUR) were reported in 2020. Especially polyamides (PA) and polypropylene (PP) will continue to grow significantly (about 36 %) until 2025. While capacities for polyhydroxyalkanoates (PHA) will grow in Asia and North America, casein polymers in Europe will increase by 32 % until 2025, followed by increases in PE in South America and Europe, PLA mainly in Europe and PBAT in Asia with about 8 %.

Bio-based feedstocks

Considering the steadily increasing demand for bio-based polymers, the need for biomass feedstocks should be taken into account as an important factor. This is especially true for the recurring debate on the use of food crops for bio-based polymer production. Figure 2 shows the worldwide biomass utilisation in 2020. The total demand for biomass was 12.5 billion tonnes for feed, bioenergy, food, material use, biofuels as well as bio-based polymers. While the majority of the biomass (59 %) is used for feed production, only 0.038 % are needed for bio-based polymer production. That results in a biomass feedstock demand of 4.8 million tonnes for the production of 4 million tonnes of bio-based polymers and corresponds to an agricultural land share of only 0.006 %. This small area share is due to various factors: The major feedstock used for bio-based polymer production is glycerol (37 %), as a biogenic process by-product from biodiesel production it represents a biomass without land use. This glycerol is mainly used for epoxy resin production via epichlorohydrin as an intermediate. The utilised biomass also comprises 24 % starch and 16 % sugars, both feedstocks are derived from high-yielding crops, such as maize, sugar beet or sugar cane, having a high area efficiency. 12 % of the biomass are from non-edible plant oil, such as castor oil, 9 % from cellulose (mainly used for cellulose acetate) and 2 % from edible plant oil.

From the 4 million tonnes of produced bio-based polymers (fully and partly bio-based) only 1.9 million tonnes are actual bio-based components of the polymers (46 %) (Table 2). Considering this fact, 2.5 times more feedstock is needed than actually is incorporated into the final product. This amount of 2.9 million tonnes (61 %) of feedstock that is not ending up in the product is due to a high number of conversion steps and related feedstock and intermediate losses, as well as the formation of by-products.

Sustainability and renewable carbon

The only way for polymers, plastics and chemicals to become sustainable, climate-friendly and part of the circular economy is the complete substitution of fossil carbon with renewable carbon from alternative sources: biomass, CO2 and recycling (http://www.renewable-carbon.eu). This necessary transition is already on the strategic agenda of several global brands, that are already expanding their feedstock portfolio to include, next to fossil-based, all three sources of renewable carbon. This rethinking from the market point of view, especially in the use of biomass, will, and already did, increase the supply of bio-based as well as biodegradable polymers. Nevertheless, the market remains challenging from a political perspective and in terms of crude oil prices, as major advantages of bio-based polymers have not been politically rewarded yet: 1) Bio-based polymers replace fossil carbon in the production process with renewable carbon from biomass. This is indispensable for a sustainable, climate-friendly plastics industry. 2) Biodegradability is offered by almost half of the produced bio-based polymers. This can be a solution for plastics that cannot be collected and enter the environment. In these situations, they can biodegrade without leaving behind microplastics. Only a few countries such as Italy, France and probably Spain will politically support this additional disposal path.


The most important market drivers in 2020 were brands that want to offer their customers environmentally friendly solutions and critical consumers looking for alternatives to petrochemical products.

If bio-based polymers were to be accepted as a solution and promoted in a similar way as biofuels, annual growth rates of 10 to 20 % could be expected. The same would apply, should the oil price rise significantly. Based on the already existing technical maturity of bio-based polymers, considerable market shares could be gained in these cases.

Bio-based polymers

The global polymer market includes functional and structural polymers, rubber products as well as man-made fibres (Figure 3). This report focuses on the bio-based share of the structural polymers. Bio-based structural polymers are composed of the structural part, exhaustively reviewed in this report and the bio-based linoleum part. Together amounting to 4.1 million tonnes. On the other hand, the total amount of bio-based functional polymers consists of bio-based functional polymers and paper starch, yielding 13.6 million tonnes. Besides these two groups making up 17.7 million tonnes of bio-based functional and structural polymers, also rubber products and man-made fibres can be bio-based. In total,14.1 million tonnes of rubber products and 7 million tonnes of man-made fibres are from bio-based resources.

Figure 4 shows all (semi-)commercial pathways from biomass via different intermediates and building blocks to bio-based polymers. As in previous years, several pathways and some new intermediates were added. Bio-based building blocks and polymers analysed in detail within the report are highlighted in bold. 

Figure 5 shows the different pathways of bio-based “drop-in”, “smart drop-in” and “dedicated” inputs within the chemical production chain. For each group, certain bio-based polymers are exemplarily shown. Additionally, biodegradable bio-based polymers are highlighted with a green dot. The different bio-based polymer groups are subject to different market dynamics. While drop-ins have direct fossil-based counterparts and can substitute them, the dedicated ones have new properties and functionalities that petrochemistry does not provide. Both have their own advantages and disadvantages from a production and market perspective. While bio-based drop-in chemicals are bio-based versions of existing petrochemicals, which have established markets and are chemically identical to existing fossil-based chemicals, smart drop-in chemicals are a special sub-group of drop-in chemicals. Even though they are chemically identical to existing chemicals based on fossil hydrocarbons, their bio-based pathways provide significant process advantages compared to the conventional pathways. Additionally, these bio-based pathways can be built on completely new approaches, such as epichlorohydrin, where the fossil feedstock propylene is not substituted by bio-based propylene but with glycerol from biodiesel production. Dedicated bio-based chemicals are chemicals which are produced commercially via a dedicated pathway and do not have an identical fossil-based counterpart.

Figure 6 and Figure 7 summarise the results of the report and show the share of the bio-based polymer production capacities in 2020 and the development of capacities from 2018 to 2025 on the basis of forecasts by current and some new producers. The total installed capacity in 2020 was 4.6 million tonnes with an actual production of 4.2 million tonnes. An increase to 6.7 million tonnes capacity in 2025 is expected, indicating an average compound annual growth rate (CAGR) of about 8 %. The following polymers show an even higher increase significantly above the average growth rate: PA will continue to grow by 37 % and PP by 34 % until 2025. Casein polymers in Europe will increase by 32 % until 2025, followed by 8 % increases in PE and a 7 % growth for PLA and PBAT.

Bio-based building blocks

Figure 8 illustrates the development of capacities for the main bio-based building blocks used for the production of polymers from 2011 to 2025. The building blocks are utilised for the synthesis of structural and functional polymers as well as ingredients in various other applications such as food, feed, cosmetics or pharmaceuticals, and therefore show a higher average CAGR than polymers.

The overall production capacity of bio-based building blocks increased about 7 % (212,000 t/a) in 2020. This increase is mainly based on L-lactic acid and epichlorohydrin (ECH). The overall forecast for bio-based building blocks worldwide indicates a growth by 11 % (CAGR) until 2025, with 1,5-pentamethylenediamine (DN5), naphtha, ethylene and different furan derivatives being the main drivers.

Global production capacities of bio-based polymers by region

After Asia as leading region, which has installed the largest bio-based production capacities worldwide with 47 % in 2020, Europe follows with 26 %, followed by North America with 17 % and South America with 9 %, respectively (Figure 9). With an expected CAGR of 16 % between 2020 and 2025, Asia displays the highest growth of bio-based polymer capacities compared to other regions of the world. This increase is mainly due to higher production capacities for PA, PBAT, PHA and PLA.

Market segments for bio-based polymers

Today, bio-based polymers can be used in almost all market segments and applications, but the various applications per polymer can be very different. Figure 10 shows a summary of the applications for all bio-based polymers covered in the report. In 2020 fibres including woven, non-woven (mainly cellulose acetate (CA) and polytrimethylene terephthalate (PTT)) have the highest share with 24 %. Packaging, flexible and rigid, also have a 24 % share in total, followed by automotive and transport with 16 % (mainly epoxy resins, PUR and aliphatic polycarbonates (APCs)), building and construction with 14 % (mainly epoxy resins and PA), consumer goods with 9 % (mainly starch-containing polymer compounds, PP and casein polymers). The market segments agri- and horticulture, electrics and electronics as well as functional and others have a market share of under 5 %, respectively.




More News from TEXDATA International

#People

Happy Holidays!

Dear reader, the year 2025 is drawing to a close. We are entering what we hope will be a peaceful holiday season, spending time with our families and taking a moment to pause and reflect. We hope we have been able to support you once again this year with relevant news and articles, and we look forward to surprising you with many innovations in the coming year. Enjoy the festive season, stay healthy, and we wish you a happy and joyful holiday season.

#Recycling / Circular Economy

textile.4U publishes special edition “Top 100 Textile Recycling Companies 2025”

With a comprehensive 176-page special edition, textile.4U is dedicating its latest issue entirely to one of the most dynamic and influential topics in today’s textile industry: textile recycling. The new issue, published exclusively in high-quality print, presents the Top 100 textile recycling companies researched and selected by TexData – organizations that already play a key role in the transition to circular textiles or are expected to have a significant impact in the near future.

#Recycling / Circular Economy

Responsible Textile Recovery Act of 2024 signed by Governor

Senator Josh Newman (D-Fullerton) is proud to announce that Senate Bill 707 (SB 707), the Responsible Textile Recovery Act of 2024, has been signed into law by the Governor of California, Gavin Newsom. This groundbreaking legislation establishes the country’s first Extended Producer Responsibility (EPR) textile recycling program, marking a significant step forward in the state’s efforts to combat waste and promote sustainability.

#Textiles & Apparel / Garment

Modtissimo promotes sustainability with 28 coordinates in the Green Circle

Modtissimo is proving more and more to be a textile and clothing show that delivers the latest innovations in the area of sustainability, with the iTechStyle Green Circle being the main showcase for companies' creations. In this 60+4 edition, taking place on 12 and 13 September, 28 coordinates will be exhibited in a section organised by CITEVE and curated by Paulo Gomes.

More News on Raw Materials

#Natural Fibers

38th International Cotton Conference Bremen: Let´s Talk about Cotton!

The 38th International Cotton Conference Bremen, to be held on 25-27 March 2026 in Bremen’s parliament building on market square, once again sends a powerful signal for professional excellence and international dialogue. The focus is on the latest market trends and technical innovations throughout the entire value chain – from agriculture and quality assurance to processing and the circular economy. With its high-calibre speakers, the conference remains an indispensable forum for anyone involved in shaping the cotton industry scientifically, technically, or economically.

#Natural Fibers

Human Rights Day: Cotton made in Africa reinforces its commitment to ensuring respect for human rights in cotton production

The sustainable cotton standard Cotton made in Africa (CmiA) has always focussed on respect for human rights, including by prohibiting child labour and discrimination. With the new version of the CmiA standard coming into force, AbTF raises requirements for due diligence in the areas of human rights and risk management.

#Research & Development

How innovations drive BASF’s success

“Innovation has always been part of BASF’s DNA. Especially in these volatile times, it is crucial to leverage our innovative strength to develop competitive solutions that differentiate us as a company in our markets and give us a competitive edge,” said Dr. Stephan Kothrade, Member of the Board of Executive Directors of BASF and Chief Technology Officer, at the company’s Research Press Briefing held today. To achieve this, BASF implemented its “Winning Ways” strategy about a year ago with the clear goal of becoming the preferred chemical company to enable its customers’ green transformation.

#Natural Fibers

38th International Cotton Conference Bremen launches registration and unveils key topics

Participants can now register online for the 38th International Cotton Conference Bremen, which will be held on 25-27 March 2026 at the Haus der Bürgerschaft parliament building on market square. All visitors can look forward to a high-calibre conference programme, numerous additional meetings and a valuable exchange of knowledge and information. The comprehensive range of topics covering the entire value chain will provide practical expertise, address current developments, answer key industry questions, and provide new impetus for the future.

Latest News

#Weaving

Lindauer Dornier announces leadership transition in weaving machine business

After more than ten successful years at Lindauer DORNIER GmbH, Mr Wolfgang Schöffl will leave the family-owned company at the end of the year to enter well-deserved retirement.

#Heimtextil 2026

Texpertise Focus AI: Messe Frankfurt puts Artificial Intelligence centre stage at its international textile and apparel trade fairs

Under the banner 'Texpertise Focus AI, Messe Frankfurt will place a strong emphasis on Artificial Intelligence (AI) across its international textile and apparel trade fairs from 2026 onwards, setting a future-shaping signal for the industry. The initiative highlights the responsible use of AI along the entire textile value chain, from fibre production to the point of sale. The programme will launch at Heimtextil in Frankfurt in January 2026.

#Technical Textiles

Autoneum and Polestar set new benchmarks for passenger experience and sustainability

As the global market leader in sustainable acoustic and thermal management, Autoneum is a key supplier of interior and exterior components for the highly anticipated Polestar 5 model. The successful collaboration between Autoneum and Polestar marks a significant milestone in sustainable automotive engineering: the electric grand tourer sports car features several innovations in lightweight, fully recyclable polyester-based components that ensure a superior driving experience. Polestar 5 was revealed at the IAA Mobility 2025 in Munich and is available in 24 markets.

#Natural Fibers

Cashmere producers stress the importance of The Good Cashmere Standard®

At the invitation of the Aid by Trade Foundation (AbTF), over 70 experts from the cashmere production and supply chain, as well as other specialists, met at the GCS Unit Meeting in Shanghai, China to discuss the progress and new objectives of The Good Cashmere Standard (GCS). The meeting focused on implementation and verification of the standard, important aspects of animal welfare and the importance of the standard in the global textile market.

TOP