[pageLogInLogOut]

#Yarn & Fiber

Toray develops revolutionary Ion-Conductive polymer membrane for batteries that could dramatically extend vehicular cruise ranges

Toray Industries, Inc., announced that it has developed an ion-conductive polymer membrane that delivers 10-fold the ion conductivity of predecessors. This new offering could accelerate the deployment of solid-state batteries (see glossary note 1), air batteries (glossary note 2), and other lithium metal batteries, greatly expanding the cruising ranges of electric vehicles, industrial drones, urban air mobility systems, and other transportation modes.

A transition to electric mobility is increasing demand for lithium-ion batteries delivering higher energy densities. Efforts are accordingly under way to develop lithium metal batteries whose anodes enable the highest theoretical energy capacity.

The challenge of lithium metal is its high surface reactivity and the stability issues associated with its dissolution and precipitation morphology during charging and discharging cycles. One notable drawback is the growth of lithium dendrites (glossary note 3), which can cause short circuits. Metallic lithium anodes in batteries employing solid electrolytes pose similar hurdles, and have yet to see practical applications.

Toray developed polymer membranes offering ion conductivity through hopping conduction. This mechanism enables lithium ions to traverse between interacting sites within polymer membranes, effectively jumping across sites. The membranes remain non-porous. This breakthrough leveraged the company’s expertise in molecular design technology, particularly with aramid polymers (glossary note 4), which it refined over many years.

Toray estimates that enhancing the hopping site (glossary note 5) structure and designing a new polymer with more hopping sites has delivered the highest ionic conductivity in the 10-4 S/cm range for a hopping-conductive polymer film.

Toray confirmed that the polymer film functions effectively as a protective film on lithium metal surfaces to overcome the issues mentioned earlier, and should extend the service lives of batteries using lithium metal lithium anodes.

Joint research with Professor Nobuyuki Imanishi of the Graduate School of Engineering at Mie University verified the achievement of 100 charge-discharge cycles for the first time in a dual component lithium-air battery employing this polymer membrane as a separator.

Toray will accelerate research to swiftly establish technology for deployment on solid-state, air, and other advanced batteries.

Part of the development work for the new membrane was through a project funded by the New Energy and Industrial Technology Development Organization (NEDO). Toray plans to present its technology at the 91st Annual Meeting of the Electrochemical Society of Japan, which is from March 14 through 16 this year.

Toray will keep leveraging its core technologies of synthetic organic and polymer chemistry, biotechnology, and nanotechnology to innovate materials in keeping with its commitment to delivering new value and contributing to social progress.

Figure 1: Positioning of conventional microporous membrane and new membrane
Figure 1: Positioning of conventional microporous membrane and new membrane


Figure 2: Hopping conduction
Figure 2: Hopping conduction


Glossary

1. A solid-state battery uses solid electrolytes instead of the liquid or polymer that lithium-ion batteries employ. The inflammable electrolytes of solid-state batteries enhance safety. Another benefit is that charging is faster.

2. A lithium-air battery is light and offers high capacity. It employs a lithium metal anode and an oxygen cathode. A organic electrolyte anode and aqueous electrolyte cathode structure is under consideration.

3. Lithium dendrites are branch-like lithium crystals that grow when charging batteries. Dendrite growth can degrade battery performance and cause short circuits.

4. An aramid (aromatic polyamide) is a high-performance polymer offering superb heat resistance and rigidity. Toray is the world’s only company to commercialize aramids, through its mictron® film brand. A common application is data storage tapes, which taking advantage of its outstanding rigidity for mass-produced films. Another use is as a circuit material for thin films because its heat resistance ranks second only to that of polyimide.

5. A hopping site refers to specific atoms or atomic groups in polymer chains serving as a transit point for lithium ions to undergo hopping conduction in a polymer membrane.


More News from Toray Engineering Co. Ltd.

#Recycling / Circular Economy

Toray develops recycling technology that retains carbon fiber strength and surface quality

Toray Industries, Inc., announced today that it has developed a recycling technology that can decompose diverse carbon fiber reinforced plastics (CFRP) made from thermosetting resins while retaining the strength and surface quality of those fibers. The company drew on this technology to create a nonwoven fabric employing recycled carbon fibers.

#Composites

HEAD launches more sustainable(1) BOOM RAW racquet on Earth Day by using Toray’s bio-circular carbon fibers

HEAD continues to innovate with the launch of the BOOM RAW tennis racquet, an encouraging development in the search for a more sustainable future for racquet sports. All of the carbon fibers are bio-circular carbon fibers in the limited-edition and highly innovative BOOM RAW racquet, which offers the same explosive power - along with the same fun, feel and easy playability - as the regular, in-line BOOM racquet. The bio-circular carbon fibers are manufactured by Toray and its subsidiary Toray Carbon Fibers Europe.

#Recycling / Circular Economy

Companies in Japan initiate demonstration to expand the automotive recycling process

DENSO CORPORATION and other partners have been chosen by an industry-government-academia collaborative project aiming to expand the recycle content for automobile in the fiscal year 2023 supported by Ministry of the Environment, Japan.

#Yarn & Fiber

Toray develops durable reverse osmosis membrane

Toray Industries, Inc., announced today that it has developed a highly durable reverse osmosis (RO) membrane (see glossary note 1). This innovative offering guarantees the long-term provision of high-quality water. It also maintains the superior removal performance of Toray’s existing membranes vital for reusing industrial wastewater and treating sewage.

More News on Yarn & Fiber

#Weaving

Vandewiele Group: Innovation across the textile value chain at ICFE Istanbul 2026

At the 2026 Istanbul Carpet & Flooring Expo (ICFE), Vandewiele Group presents its latest advancements spanning the entire textile value chain. From spinning and weaving to tufting, carpet manufacturing and digital finishing, the Group demonstrates how integrated innovation can boost performance, efficiency and sustainability across all stages of production. As a global technology leader, Vandewiele continues to develop solutions that strengthen processes, enhance product quality and enable smarter, greener manufacturing.

#Man-Made Fibers

Trevira CS® ignites Heimtextil 2026 with "WE CARE" campaign

Indorama Ventures, a global sustainable chemical company, announces its Trevira CS® brand’s powerful and socially responsible presentation at Heimtextil 2026 in Frankfurt, Germany, from January 13 to 16, 2026. The impactful theme of the show: “WE CARE.”

#Recycled_Fibers

CARBIOS and Wankai sign strategic PET biorecycling pact

CARBIOS (Euronext Growth Paris: ALCRB) and Wankai New Materials (“Wankai”), a listed subsidiary of Zhink Group, the 3rd largest PET producer in China and 4th worldwide, announce the signing of the definitive agreement establishing a strategic partnership for the industrial rollout of CARBIOS’s PET biorecycling technology in Asia. The first milestone will be the construction of a PET biorecycling plant in China.

#Yarn & Fiber

Fulgar voice at the Milan Fashion Institute

Daniela Antunes, Marketing Manager at Fulgar, participated as an expert speaker at the XVII edition of the Master in Brand & Product Management of the prestigious Milano Fashion Institute, which trains well-rounded professionals capable of managing both the creative and strategic-managerial aspects of the fashion & luxury sector.

Latest News

#Spinning

First PA66 spinning plant with EvoQuench successfully commissioned

With the successful commissioning of a multi-digit PA66 spinning line for microfiber yarns, Chinese textile company Shandong Nanshan Fashion Technology Co., Ltd. has added yarn production to its textile value chain.

#Knitting & Hosiery

SHIMA SEIKI returns to ShanghaiTex

Leading flat knitting solutions provider SHIMA SEIKI MFG., LTD. of Wakayama, Japan, together with its Hong Kong and Chinese market subsidiary SHIMA SEIKI (HONG KONG) LTD., will exhibit at the ShanghaiTex 2025 exhibition (Booth No.: Hall N3, Booth A20) held in Shanghai, China this month. This marks the return of SHIMA SEIKI to ShanghaiTex after a 14-year hiatus, its last exhibit at the show having been in 2011.

#Research & Development

Fraunhofer CCPE presents the “Monomaterial Design Set” – Innovative solutions for circular product design

Composite materials made from different types of plastic often extend the lifetime of products but make recycling more difficult in the circular economy. That is why Fraunhofer CCPE has developed the “Monomaterial Design Set”. This new approach helps to reduce the variety of plastics used in durable products and offers circular solutions for designers and product developers.

#Man-Made Fibers

arena introduces renewable LYCRA® EcoMade fiber in its latest swimwear collection

Italian swimwear specialist arena has unveiled a new collection that brings sustainability and performance even closer together. Launched on December 4, the line features swimsuits made from recycled nylon and renewable LYCRA® EcoMade fiber — the first time the bio-based spandex has been used commercially in swimwear.

TOP