[pageLogInLogOut]

#Research & Development

Carbon fibers from lignin - a new process for economical production

Lignin precursor fibers spun from water, stabilized and carbonized continuous filaments. Photo: DITF
A novel, both environmentally friendly and cost-saving process for the production of carbon fibers from lignin has been developed at DITF. It is characterized by high energy-saving potential. The avoidance of solvents and the use of natural raw materials make the process environmentally friendly.

New raw material replaces established process

Carbon fibers are usually produced on an industrial scale from polyacrylonitrile (PAN). The stabilization and carbonization of the fibers takes place with long dwell times in high-temperature furnaces. This costs a lot of energy and makes the fibers expensive. In addition, toxic by-products are produced that have to be separated from the manufacturing process in a costly and energy-intensive process.

A novel process developed at DITF enables high energy savings in all these process steps. Lignin replaces polyacrylonitrile for the production of precursor fibers, which are converted into carbon fibers in a second process step. Lignin as a starting material for the production of carbon fibers has so far received little attention in industrial production. It is an inexpensive raw material that is available in large quantities and is a waste product in paper production.

New ways to carbon fiber

The new process for producing lignin fibers is based on an aqueous solution of lignin. For this purpose, wood is separated into its components lignin and cellulose. A sulfite digestion process enables the production of lignosulfonate, which is dissolved in water.

The spinning process itself is carried out in the so-called dry spinning process. In this process, an extruder presses the spinning mass through a nozzle into a heated spinning shaft. The resulting continuous fibers dry quickly and uniformly in the spinning shaft. Lignin fibers spun from an aqueous solution - this is a completely new and environmentally friendly approach, because the process does not require the use of solvents or toxic additives at all.

The following steps for the production of carbon fibers, namely stabilization in hot air and subsequent carbonization in the high-temperature furnace, are similar to those of the usual process when PAN is used as a precursor fiber. However, lignin fibers also show their advantages here, because they can be stabilized particularly quickly in the oven with hot air and only require relatively low temperatures in carbonization. The energy savings in these process steps compared with PAN are around 50% and represent a real competitive advantage.




Lignin fibers spun from water offer technical advantages

In the new process for producing lignin fibers, wood is first separated into its components lignin and cellulose. A sulfite digestion process enables the production of lignosulfonate, which is dissolved in water. An aqueous solution of lignin is then the starting material for spinning the fibers.

The dry spinning process allows high spinning speeds. As a result, much more material is produced in a shorter time than is possible with PAN fibers. This is another competitive advantage, which nevertheless does not allow any compromises to be made on the quality of the lignin precursor fibers: These are in fact extremely homogeneous, have smooth surfaces and no adhesions. Such structural features facilitate further processing into carbon fibers and ultimately also into fiber composites.

In summary, the precursor lignin fibers obtained in the new spinning process show clear advantages over PAN in terms of cost efficiency and environmental compatibility. The mechanical properties of the carbon fibers produced from them, on the other hand, are almost comparable - they are just as strong, resistant and light as is known from commercially available products.

Carbon fibers made from water-spun lignin fibers are likely to be of particular interest for applications in the construction and automotive sectors, which benefit greatly from cost reductions in the production process.



More News from TEXDATA International

#Recycling / Circular Economy

textile.4U publishes special edition “Top 100 Textile Recycling Companies 2025”

With a comprehensive 176-page special edition, textile.4U is dedicating its latest issue entirely to one of the most dynamic and influential topics in today’s textile industry: textile recycling. The new issue, published exclusively in high-quality print, presents the Top 100 textile recycling companies researched and selected by TexData – organizations that already play a key role in the transition to circular textiles or are expected to have a significant impact in the near future.

#Recycling / Circular Economy

Responsible Textile Recovery Act of 2024 signed by Governor

Senator Josh Newman (D-Fullerton) is proud to announce that Senate Bill 707 (SB 707), the Responsible Textile Recovery Act of 2024, has been signed into law by the Governor of California, Gavin Newsom. This groundbreaking legislation establishes the country’s first Extended Producer Responsibility (EPR) textile recycling program, marking a significant step forward in the state’s efforts to combat waste and promote sustainability.

#Textiles & Apparel / Garment

Modtissimo promotes sustainability with 28 coordinates in the Green Circle

Modtissimo is proving more and more to be a textile and clothing show that delivers the latest innovations in the area of sustainability, with the iTechStyle Green Circle being the main showcase for companies' creations. In this 60+4 edition, taking place on 12 and 13 September, 28 coordinates will be exhibited in a section organised by CITEVE and curated by Paulo Gomes.

#Europe

The EU and Egypt team up to mobilise private sector investments at Investment Conference and sign a Memorandum of Understanding underpinning €1 billion in macro-financial assistance for Egypt

At the EU-Egypt Investment Conference, co-organised by the EU and the Government of Egypt on 29-30 June, the EU and Egypt are teaming up to intensify private sector investments in Egypt. They are also signing a Memorandum of Understanding (MoU) for the disbursement to Egypt of up to €1 billion in Macro-Financial Assistance.

More News on Research & Development

#Research & Development

New DIN SPEC assesses environmental impact of textile fragments in soil

Textile products made from synthetic fibres, finished fabrics or dyed materials release fibre fragments into the environment at every stage of their life cycle. With the new DIN SPEC 19296, Hohenstein has developed a standardised testing method to analyse how these fragments behave in soil under natural conditions. Until now, little was known about their environmental behaviour or potential ecological effects once released.

#Research & Development

Solid Air Dynamics wins second place at RWTH Innovation Award

On 30 January, RWTH spin-off Solid Air Dynamics was awarded second place in the RWTH Innovation Awards for its research in the field of aerogel fibres. Manufactured from renewable raw materials, aerogel fibres offer outstanding thermal insulation, are extremely lightweight and completely biodegradable, and can consist of over 90 per cent air.

#Research & Development

Testing and research laboratory ensures safe and more sustainable products worldwide

For 80 years, Hohenstein has stood for independent testing, scientific expertise and practical solutions. Today, the testing and research service provider supports manufacturers and brands worldwide in making textiles, hardlines and medical devices safe, more sustainable and market-ready – thereby building trust among consumers. With an international presence and interdisciplinary expertise, Hohenstein supports its customers from production through to market launch, helping them navigate an environment of growing regulatory and societal demands.

#Research & Development

Award-winning research for sustainable carbon fibre cycles

Sustainable recycling of carbon fibres is possible through targeted electrochemical surface modification, which makes the sizing of carbon fibres resistant to solvolysis. ITA PhD student Sabina Dann was awarded the MSW Award from RWTH Aachen University for her master's thesis on this development. The award ceremony took place on 12 November 2025 in Aachen.

Latest News

#Sustainability

Ying McGuire becomes new CEO of Cascale

Cascale today announced the appointment of Ying McGuire as Chief Executive Officer, effective June 1, 2026.

#Technical Textiles

Sustainable, lightweight, and sound absorbing: Polyester-based front trunk solution for BEVs

As car manufacturers look to further reduce their carbon footprint, Autoneum has developed an innovative front trunk solution for battery electric vehicles (BEVs), made entirely from polyester-based textile. The Ultra-Silent Frunk offers significant weight reduction, improved acoustic and thermal insulation, and uses up to 70 percent recycled material, supporting sustainable and efficient vehicle design. Autoneum, global technology leader in acoustic and thermal management for vehicles, has already received orders for the new frunk from three major OEMs in Asia and Europe to be built in three BEV models. Series production for two BEVs has been underway in China and Germany since last year.

#Raw Materials

Modern testing methods for raw cotton

The 38th International Cotton Conference Bremen will take place from 25 to 27 March 2026 at the Bremen Parliament. This conference has traditionally stood for in-depth expertise and international exchange. The program will focus on technical innovations, market trends, and regulatory frameworks across the entire value chain – from agriculture to the circular economy. With high-profile speakers, the conference is regarded as the key meeting point for the global cotton industry. Today’s focus: Cotton quality and testing methods.

#Spinning

Rieter responds to higher raw material prices

Global political and economic developments have been leading to rising raw material and energy costs for some time. The textile machinery industry is also affected by this trend. Rieter machines and components consist to a large extent of steel, copper, aluminum and electronics. These materials in particular have seen higher demand and higher prices in recent months.

TOP