[pageLogInLogOut]

#Industry 4.0 / Digitalization

High-frequency technology entirely in glass

© Endress+Hauser AG - The side view of the glass package shows its three-layered structure, vias, and solder balls.
To remain competitive in the field of the Internet of Things, even medium-sized industrial and process metrology companies need to increasingly integrate their sensor circuits into ASICs (application-specific integrated circuits). The semiconductor industry is currently meeting this need with lower costs for development cycles and decreasing quantity hurdles.

This is not occurring often enough in chip packaging, meaning that ASICs requiring individual packages are at risk of being bogged down due to the quantity hurdles of package service providers, most of which are Asian. This issue is now resolved by a consortium of seven partners from industry and research. 

Radar sensors for industrial and process metrology, as addressed in the project “Glass Interposer Technology for Implementing Highly Compact Electronic Systems for High-frequency Applications” (GlaRA) sponsored by the BMBF (Bundesministerium für Bildung und Forschung, German Federal Ministry of Education and Research), are a good example of the needs profile described above. Standard packages do not work because of the frequencies exceeding 100 GHz – higher than those of mobile communications technology – and the stricter environmental requirements. They must allow for adaptation to specialized sensor ASICs and permit manufacturing in medium-sized quantities at competitive prices.

© Endress+Hauser AG - Conducting paths, ASIC, and waveguide holder can be seen in this view of the package (base area 5.9 x 4.4 mm²).
© Endress+Hauser AG - Conducting paths, ASIC, and waveguide holder can be seen in this view of the package (base area 5.9 x 4.4 mm²).


To this end, the consortium has developed and characterized a reliable interposer technology as a system-in-package (SiP) based on glass for broadband millimeter wave modules that can be used in sensors and communication at frequencies above 100 GHz. The technology platform demonstrated here constitutes a sensor packaging revolution: Compared to the state of the art, it uses various waveguide concepts, high-density micro wiring, and hermetic encapsulation to increase functions able to be integrated. In addition, it makes applications up to 300 GHz possible thanks to high precision and material qualities. This is implemented within a single material system (glass) through excellent waveguide properties and high-precision micromachining, among others.

The use of glass interposers with electric feedthroughs (vias) provides hermetic packaging able to enclose the components between two glass interposers. The packages are manufactured at wafer level with a diameter of up to 300 mm. This allows for moderate costs thanks to the simultaneous processing of many components and alignment accuracy within the narrow tolerances of RF technology. Adapted standard systems originally used for machining silicon wafers are employed for this, greatly accelerating commercial implementation. Glass is also available in large panels, considerably simplifying scaling to large quantities.

The results represent exceptionally great success for an R&D project sponsored by the BMBF. The consortium demonstrates this with an extremely compact radar front end developed at Endress+Hauser AG for future radar fill level sensors, with an operating frequency of 160 GHz. The glass package is tiny (5.9 x 4.4 x 0.8 mm³) and contains a radar ASIC in SiGe technology, all electrical connections to external electronics, test structures for characterization, and a waveguide connection that can also be used as an integrated primary emitter for a lens antenna. Such future fill level sensors feature high distance resolution, measuring accuracy, and beam focusing at very compact dimensions. Therefore, they are of great interest for the constantly shrinking and increasingly more modular systems of smart process metrology.


The demos were produced using a new kind of process chain, starting with the revolutionary laser-induced deep etching (LIDE) of LPKF Laser & Electronics AG. The process of generating microstructures in glass prevents damage to the material, which is mandatory for a manageable and hermetic glass package. The Fraunhofer Institute for Reliability and Micro-Integration has implemented a process fit for industrial use for metallizing the glass vias with high aspect ratios. A wafer bonding process is used to hermetically package the assembled components by bonding two glass wafers, each of which have vias and cavities.

The conducting paths on the glass substrates are structured and metallized at PacTech GmbH. Using PacTech’s SB² process, a laser-supported process for the sequential build-up of solder balls, solder deposits are placed on contact surfaces produced without         external current. Different alloys are used to enable staggered assembly at different soldering temperatures. MSG Lithoglas GmbH assists with the implementation of the HF packages by producing cavities used to hold the ASIC and other components. In addition, high-precision spacers made of glass are produced by means of low-temperature coating.

With a high-frequency concept developed for the new package by the Institute for Microwave Technology of Ulm University, the radar signal – at more than 100 GHz – can both illuminate a lens directly via a primary beam and be guided at low loss to a detached antenna via a flexible dielectric waveguide. The different options for emitting radar signals from the package enable a great variety of applications. Sentronics Metrology GmbH has developed a 3D high-speed sensor with layer resolutions in the sub-nanometer range for quality control. Among other uses, the sensor has been qualified for detecting leaks in the encapsulated, evacuated glass packages.

© Endress+Hauser AG - A mounted radar sensor with a glass package in the center and an attached dielectric waveguide
© Endress+Hauser AG - A mounted radar sensor with a glass package in the center and an attached dielectric waveguide


The industry partners are very interested in the future commercial availability of the technology, as they see potential for many other areas of application, such as pressure measurement technology, liquid analysis, photonics, MEMS, medical technology, and communication technology beyond 5G.

The “GlaRA” funding project is being sponsored by the BMBF from August 2017 to March 2021 under reference no. 16ES0687K as part of the TechSys call.



More News from Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

More News on Industry 4.0 / Digitalization

#Software

Tunicotex Group boosts OTDP to 85%, cuts planning time by 25% & expands production capacity by 40%

Coats Digital is delighted to announce that following the implementation of FastReactPlan, leading Tunisian premium knitwear manufacturer, Tunicotex Group, has significantly improved its on-time delivery performance from 75% to 85%, reduced planning time by 25%, minimised delays and penalty costs, and unlocked 40% additional capacity to take on more customer orders and support sustained business growth.

#Industry 4.0 / Digitalization

Suzhou Tianyuan boosts costing accuracy to 98% with Coats Digital’s GSDCost

Coats Digital is delighted to announce that Suzhou Tianyuan Garments Co., Ltd., a leading manufacturer of high-quality sportswear and functional apparel for global brands such as Adidas, FILA, ANTA, and The North Face, has achieved remarkable productivity and cost management improvements following the implementation of Coats Digital’s award-winning method-time-cost optimisation solution, GSDCost.

#Industry 4.0 / Digitalization

Lenze receives IEC 62443-4-1 certification: TÜV Rheinland confirms cyber-secure development process

Lenze SE has been certified according to IEC 62443-4-1 since November 2025. TÜV Rheinland thus confirms that Lenze meets the requirements of this internationally recognized standard for a secure development process for industrial automation and drive products. The certification is an important milestone on the way to implementing the EU Cyber Resilience Act (CRA), which will become mandatory for machine manufacturers and their suppliers from December 2027.

#Industry 4.0 / Digitalization

Mango joins TextileGenesis pioneering traceability solution, a Lectra company, for a transparent value chain

Mango, one of the leading international fashion groups, has joined TextileGenesis, the pioneering traceability solution for the fashion and textile industries, to trace their natural and animal fibers, synthetics, man-made cellulosic fibers and leather. TextileGenesis, a Lectra company, offers a complete and secure cutting-edge technology with its six-dimensional (6D) offering and unique “fiber forwards” approach. Mango, has long been committed to maintaining a fully transparent supply chain, and TextileGenesis will reinforce this commitment.

Latest News

#Fabrics

MUNICH FABRIC START: Between Attitude and Sensuality

The future begins where we reimagine it. After seasons of restraint, Spring.Summer 27 marks a conscious counter-trend: optimism, sensuality, and creative freedom are replacing pragmatism and neutrality. Physical presence and individuality are regaining importance – as a response to uncertainty, exhaustion, and algorithmic predictability. The overarching theme of PLEASURE stands for fashion as an emotional space, as an expression of attitude and cultural reflection. Colours, surfaces, and materials become vehicles for self-confidence and joie de vivre.

#Denim

organIQ seek: smart alternative to potassium permanganate

CHT Group announces new technical findings within its organIQ seek platform that significantly advance the transition toward permanganate-free denim bleaching. Through extensive industrial testing and application research, CHT confirms that organIQ seek can now be used with remarkable effectiveness as a substitute for potassium permanganate in spray bleach, while remaining aligned with sustainability expectations and cost realities in the European market. At the COLOMBIATEX in Medellín as well as at the Exintex in Puebla and the Kingpins Show in Amsterdam the CHT Group will present organIQ seek as an alternative to potassium permanganate.

#Functional Fabrics

PERFORMANCE DAYS: Focus topic shifts to the beginning of the value chain

Following the last Focus Topic in October 2025, which placed Textile-to-Textile Recycling at its core, PERFORMANCE DAYS continues to drive the conversation around circularity – this time with an expanded and more upstream perspective. The upcoming Focus Topic, “Textile to Textile: The Role of Collectors and Sorters,” presented during the spring edition on March 18–19, will spotlight one of the most essential yet often overlooked components of a functioning circular textile system: the efficient collection and sorting of post-consumer textiles.

#Knitting & Hosiery

Proven performance, optimised costs – the new RE 6 EL

Nowadays textile companies increasingly need to produce small production runs and respond to market changes with instantaneous pattern changes in order to operate profitably – meaning they require machines that offer maximum flexibility, reliability and cost efficiency. KARL MAYER understands the challenges of the market and is launching its new RE 6 EL. The Raschel machine offers the core strengths of the classic RSE 6 EL and essentially the same performance parameters, but has been further cost-optimised largely due to local production advantages. This makes the newcomer an efficiency champion in production, especially when it comes to frequent pattern changes.

TOP