[pageLogInLogOut]

#Research & Development

Soft interfaces: Textile-integrated light switches, made possible by printable Liquid Metal Ink

A look at the demonstrator © WINT Design Lab / Michelle Mantel
A gentle tap on the knitted lampshade is enough to switch on the light. The lamp developed by Fraunhofer IZM in cooperation with WINT Design Lab works with a revolutionary conductive ink. Visitors can find out more and try the lamp themselves at the Berlin Science Week on November 1st and 2nd.


Lukas Werft and Christian Dils of the Fraunhofer Institute for Reliability and Microintegration IZM and their counterparts, Robin Hoske and Felix Rasehorn of WINT Design Lab, are coming to the Berlin Science Week to reveal their »Soft Interfaces« project to the waiting public. The aim of this innovative research is to develop textiles that can respond to touch and interact intelligently with their environment. The project’s magic lies in the newly developed and fully printable Liquid Metal Ink (LMI) made with Galinstan. The electrically conductive ink is covered in highly elastic thermoplastic polyurethane (TPU) and can be laminated right into knitted textiles to create surfaces that are not just functionally usable, but also flexible, stretchable, pleasing to touch and pleasing to the eye.

Showcasing the technology with a special lamp

One great example that shows the capabilities of the technology is an interactive, 3D-printed lamp with a special textile lampshade. The clean lines of the 3D-printed lamp are not harmed by any intrusive switches or buttons. Only a subtle difference in the knitted pattern invites users to touch the flat lampshade, intuitively switching the light on or off. LEDs are integrated into the body of the lamp that can be dimmed or change their color in this way.

The lampshade is made from a knitted fabric stretched over a 3D-printed frame. It includes seven LMI sensor units for controlling the light intuitively. With a simple touch, the user can turn the light on or off, dim the light, or change the color temperature. The fabric itself becomes the user interface, opening up a whole new dimension of interactivity.

Innovative technology

All of this is made possible by the newly invented Liquid Metal Ink (LMI), an electrically conductive, but also environmentally friendly ink that works with Galinstan. This alloy of gallium, indium, and tin is mixed with a solution of thermoplastic polyurethane (TPU), resulting in the viscous LMI that can be printed onto elastic substrates to create structures that work like resistive strain sensors. Gentle pressure is enough, and the resistivity of the material changes, alerting the light controllers to switch on the lamp, dim the light, or change its color.

© WINT Design Lab / Michelle Mantel
© WINT Design Lab / Michelle Mantel


Interdisciplinary collaboration

The project was born from the close cooperation between design and material science that is supported by the Fraunhofer Network »Science, Art, Design. « Regular workshopsand collaborative work at Fraunhofer IZM and WINT Design Lab brought together technological know-how and product and interaction design insights into a streamlined tactile user experience.

Future opportunities

»Soft Interfaces« shows the great potential of liquid metal conductors for diverse applications in elastic fabrics, from novel control interfaces for smart home textiles, intuitively functional surfaces for vehicles, or wearable sensors to soft robotics. The technology is currently still limited to laboratory or prototype uses, but is very promising for scalable, energy-efficient products.

On November 1st and 2nd, 2025 researchers from the Fraunhofer network »Science, Art, Design« will be on site at the Museum of Natural History’s CAMPUS as part of the Berlin Science Week. For more information, visit: https://berlinscienceweek.com/programme/textilien-die-fuhlen-mit-intelligenten-oberflachen-zur-neuartigen-interaktion


Credits:

Technical Management: Fraunhofer IZM (Lukas Werft, Christian Dils, Carlos Wisbar, Raphael Mgeladse)

Design: WINT Design Lab (Felix Rasehorn, Robin Hoske, Julia Huhnholz)

Fabric Development: Case Studies (Laura Krauthausen, Konstantin Laschkow)

Video und Fotografie: Michelle Mantel

Project Funding: Fraunhofer Network »Science, Art, Design (WKD)«



More News from Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

More News on Research & Development

#Recycling / Circular Economy

CirTex Community discusses technical, social and regulatory pathways for textile circularity

Around 50 participants joined the third meeting of the DATIpilot Innovationscommunity Circular Textiles (CirTex) on 19 November 2025. The online event was organised in cooperation with the Dialog Textil-Bekleidung e.V. (DTB) and the Recycling Atelier at the Institute of Textile Technology Augsburg, and was held under the motto “MAKE IT CIRCULAR.”

#Research & Development

Catching heart disease early with AI-based sensor system

It slips on like a normal vest: Fraunhofer IZM has created a smart sensor system in cooperation with the Charité and the Technical University of Berlin. The vest records a vast array of cardiovascular parameters, which an AI-based system uses to support medical diagnostics and spot potentially dangerous developments.

#Research & Development

Panty liners prevent bacterial vaginosis

Worldwide, almost one third of women of childbearing age suffer from bacterial vaginosis. This is when the sensitive microbiome of the vagina becomes unbalanced. Such a disorder of the vaginal flora can cause urogenital infections, abscesses on the ovaries or fallopian tubes or premature births. This significantly increases the risk of infertility in women and of contracting a sexually transmitted disease or HIV.

#Research & Development

Aachen Summer School: Strengthening German-Korean cooperation in 4D and robotics

The Aachen Summer School has established itself as an important platform for promoting cooperation between RWTH Aachen University and Seoul National University. The focus is on practice-oriented research projects in the field of 4D and robotics technologies, which have been successfully implemented for years at the Institut für Textiltechnik of RWTH Aachen University.

Latest News

#Spinning

Rieter adjusts group structure in preparation for Barmag integration

The planned acquisition of the “Barmag” Division of OC Oerlikon will create the leading system provider worldwide for natural and man-made fibers. Rieter is confident it will receive all regulatory approvals to complete the acquisition in the fourth quarter of 2025. The Rieter Group is therefore adjusting its Group structure as of January 1, 2026, to take this acquisition into account and to be able to provide an even more agile response to market challenges.

#Technical Textiles

Techtextil India 2025 commences: Ushering in a new era for functional textiles

Techtextil India 2025, a premier trade fair for technical textiles, non-wovens and composites, organised by Messe Frankfurt Trade Fairs India, has opened today at Bombay Exhibition Centre, Mumbai, marking its 10th edition. Running from 19 – 21 November 2025, this landmark edition connects 215 exhibitors, including 100 first-time exhibitors to the textile value chain, featuring innovations across 12 application-based textile segments.

#Textiles & Apparel / Garment

ISPO AWARDS 2025: this is the 2025 shortlist

On November 30, 2025, the ISPO Award will be presented as part of this year’s ISPO in Munich.

#Natural Fibers

Better Cotton Initiative partners with Uzbek government agency to offset certification costs

The Better Cotton Initiative (BCI) has today announced a strategic agreement with Uzbekistan’s Light Industry Agency to increase financial support for cotton farming clusters adopting sustainable agricultural practices.

TOP