[pageLogInLogOut]

#Research & Development

Catching heart disease early with AI-based sensor system

The vest can be worn by different patients and adjusted for their specific body types for greater comfort and optimum sensor readings © Fraunhofer IZM
It slips on like a normal vest: Fraunhofer IZM has created a smart sensor system in cooperation with the Charité and the Technical University of Berlin. The vest records a vast array of cardiovascular parameters, which an AI-based system uses to support medical diagnostics and spot potentially dangerous developments.

Cardiovascular diseases cause a large proportion of deaths worldwide. If they are detected in time, the chances of successful treatment are good. But long waiting lists or simply long distances for patients to see cardiac specialists often prevent an early diagnosis. Even for patients in the system, a cardiovascular problem means long and detailed analyses and regular visits to their doctor, in a local clinic or at a hospital.

As part of the joint Fraunhofer project „Medical Artificial Intelligence Applications - Center for Applied AI in Medicine“ (maia), the Fraunhofer Institute for Reliability and Microintegration IZM has teamed up with the Charité University Hospital and the Technical University of Berlin to create a sensor system that can monitor cardiovascular health in a gentle, non-invasive way.

The hardware is integrated into a smart textile vest that the patient can easily slip on and that can even be laundered. Inside the vest, there are sensors picking up more than 110 parameters, with a thousand measurements each taken every second. This makes the vest the world’s first system to capture such a large range of diagnostic parameters at the same time, and all of that continuously. On top of this information, a chatbot is at hand to ask the patient about any symptoms or issues they may be experiencing.

AI support for diagnostics and medical risk assessments

The platform is supported by a mobile edge computing module that processes the signals locally and can transmit the data wirelessly. The newly developed hybrid analytical framework combines conventional methods for processing sensor signals with cutting-edge machine learning to level up the quality of the resulting data.

The sensor data, the patient’s statements, and the doctor’s assessment are used by the AI-based system to form not just a likely diagnosis for medical personnel, but also a risk assessment for the patient, based on real-time information. This can give everybody involved crucial support for managing the cardiovascular health of the patient. It will improve access to telemedical support for patients who live in rural areas or who have mobility restrictions.

Data is captured by way of several non-invasive methods, including bioimpedance spectroscopy (BIS), electrocardiography (ECG), seismocardiography (SCG), phonocardiography (PCG), and photoplethysmography (PPG). Additional sensors are planned for the system in the future, adding echo cardiography and other capabilities. The readings are used to calculate relevant medical indicators, such as blood pressure or the size of potential edemas.

Reliable sensors in a comfortable package

The system uses innovative multichannel smart textile electrodes. To make sure that these work reliable and stay comfortable for the wearer, they come in a biocompatible and semidry form, eliminating the need for a conductive gel that could irritate and dry out the patient’s skin. The wearer simply slips on the vest, and its modular design helps keep the electrodes in the right place for stable signals, whatever shape and size the patient.

The vision is to integrate the entire system in a set of reusable stick-on patches. Made from polyurethane, the thin and dermatologically friendly material will make the system even more comfortable to wear, restrict people suffering from cardiac problems less, and ensure uninterrupted monitoring at the same time.

Fraunhofer IZM will be showcasing the system at Compamed 2025, the leading medical technology expo, coming to Düsseldorf between 17 and 20 November.



More News from Fraunhofer Institute for Reliability and Microintegration IZM

More News on Research & Development

#Research & Development

The region of renewable raw materials: Central German Alliance for Bioplastics

The development of sustainable plastic solutions is rapidly gaining importance in light of global environ- mental pollution, dwindling fossil resources and ambitious climate protection targets. As part of the re- gional alliance RUBIO, which brings together 18 partners from central Germany and the Berlin-Branden- burg area, the bio-based and biodegradable plastic polybutylene succinate (PBS) was comprehensively investigated, starting with the raw material, through the manufacturing process, to industrial application.

#Nonwoven machines

Cooperation in the field of meltblown laboratory technology

The Nonwoven Institute (NWI) at North Carolina State University and Oerlikon Nonwoven will be collaborating in the field of meltblown laboratory technology in the future. This was announced by Professor Raoul Farer, Executive Deputy Director of the NWI and Professor at the Wilson College of Textiles at North Carolina State University, and Dr. Ingo Mählmann, Sales Director Nonwoven at Oerlikon Neumag, during this year's ITMA Asia and CITME in Singapore.

#Recycling / Circular Economy

European research project addresses textile waste through integrated recycling technologies

A major European research initiative coordinated by Fraunhofer UMSICHT has been launched to develop integrated solutions for textile waste recycling. The AUTOLOOP project aims to create a comprehensive system that could process 1.24 million tonnes of textile waste annually by 2050, whilst potentially creating over 130,000 green jobs across the EU. This project aims to develop, test and integrate automated sorting, tracing, and closed-loop recycling technologies for polyester-based textiles (NRT), addressing the pressing challenge of textile waste management.

#Research & Development

Feasibility study shows potential to convert textile waste into PHB bioplastic

Textile waste could serve as a valuable source of raw materials for sustainable plastics in the future, according to the joint TexPHB feasibility study conducted by the Fraunhofer Institute for Applied Polymer Research IAP, Beneficial Design Institute GmbH and matterr GmbH. The study will be presented to the public for the first time at a network meeting on 25 November 2025 at the State Chancellery in Potsdam.

Latest News

#Recycling / Circular Economy

Advanced Recycling Conference 2025 fuels innovation across key waste streams

The Advanced Recycling Conference (ARC) 2025 brought together nearly 220 experts from 28 countries to spotlight pioneering advancements and foster industry collaboration in recycling across diverse waste streams including plastics, textiles, automotive and other materials.

#Dyeing, Drying, Finishing

Navis TubeTex announces U.S. partnership with Icomatex

Navis TubeTex, a global leader in advanced dyeing and finishing machinery solutions, is pleased to announce a new partnership with Icomatex (www.icomatex.com), a respected European manufacturer of high-quality stenters and textile finishing equipment. Under this agreement, Navis TubeTex will exclusively represent the Icomatex stenter line in the United States.

#Recycling / Circular Economy

ADVANSA launches ADVA®tex: A new step toward textile-to-textile recycling

ADVANSA has introduced ADVA®tex, a new filling fibre made entirely from recycled pre-consumer textile waste, positioning the material as a significant step forward in textile-to-textile (T2T) recycling. The fibre is designed for use in duvets, pillows, mattresses, and furniture applications and is available in three versions.

#Knitting & Hosiery

KARL MAYER celebrates 35 years of EL pattern drive

KARL MAYER is celebrating an anniversary this year: on 30 November 1990, the first warp knitting machine with electronic guide bar control, the KS 4 EL, was delivered – another milestone for patterning. As early as 1980, the SU gearbox with the MRS42SU had initiated the transition from mechanical chains to digital data.

TOP