[pageLogInLogOut]

#Research & Development

Tapes made from recycled carbon fibers for lightweight construction

Due to their excellent mechanical properties and low weight, carbon fiber reinforced plastics (CFRP) are increasingly being used in lightweight construction applications where high strength and rigidity combined with minimal weight are crucial. However, the growing use of CFRP is also accompanied by large quantities of carbon fiber waste. So far, only processing routes that significantly reduce the properties of CFRP and thus limit the fields of application have been established.
Developed “Infinity” rCF tape variant with trimming of the tape edges. © 2024 Photo: DITF
Developed “Infinity” rCF tape variant with trimming of the tape edges. © 2024 Photo: DITF


The German Institutes of Textile and Fiber Research Denkendorf (DITF) have developed highly oriented tapes made from recycled carbon fibers (rCF) suitable for reuse in high-performance applications such as structural components in the automotive sector.

Carbon fibers are usually produced from petroleum-based raw materials in an energy-intensive process that emits large amounts of CO2. The material has a global warming potential of around 20 - 65 kilograms of CO2 equivalents per kilogram. Nevertheless, the production of CFRP continues to increase and with it the amount of CFRP waste. This is because, depending on the processing method, up to 50 percent offcuts are generated during production. In addition, there are large quantities of CFRP waste in the form of components that have reached the end of their service life. In Europe alone, around 8,000 passenger aircrafts with cosiderable CFRP content are expected to be taken out of service by 2030.

Production of the “Infinity” tapes from a textile carded sliver. © 2024 Photo: DITF
Production of the “Infinity” tapes from a textile carded sliver. © 2024 Photo: DITF


Currently, only 15 percent of CFRP waste is recycled. The remaining 85 percent of these CFRP components end up in waste incineration plants or landfills at the end of their service life. Incineration can generate energy in the form of heat or electricity. However, recycling carbon fibers would contribute far more to climate and resource protection.

In recent years, various recycling processes for CFRP, such as pyrolysis or solvolysis, have therefore been further developed in order to recover high-quality carbon fibers.

Compared to virgin fibers, the possible uses of recycled carbon fibers are significantly limited. In a virgin fiber product, carbon fibers are usually present in filament strands of technically unlimited length and oriented in the direction of the load. In this way, the carbon fiber unfolds its full potential, as it has its maximum strength in the fiber direction. Recycling inevitably results in a shortening of the carbon fibers to lengths in the micrometer to centimeter range. In addition, the orientation of the carbon fibers is lost and the fibers are initially in a tangled position.

The DITF have been successfully working for around 15 years on adapting classic spinning processes to the new fiber material rCF. The aim is to develop a new category of rCF semi-finished products and improve their mechanical properties so that they can actually replace virgin fiber material in structural applications. Only then will carbon fiber-based composite materials be truly recyclable.

In order to produce an oriented semi-finished product similar to a carbon product from virgin fibers, it is crucial to eliminate the tangled position of the rCF and to align the fibers parallel to each other. One promising way of achieving this is the production of highly oriented tapes.

In a first step, the carbon fibers are opened and mixed with thermoplastic matrix fibers (polyamide 6). The fiber mixture is then further separated and oriented in a carding process modified for the processing of carbon fibers. At the outlet of the carding machine, the fiber card web produced in the carding process is combined into a fiber sliver and deposited in a can. This rCF/PA6 fiber sliver is the starting material for the subsequent tape forming process and already has a pre-orientation of the carbon fibers. The orientation of the fibers can be increased in the subsequent drawing process. By drawing the fiber tape, the fibers are moved in the direction of draft and aligned longitudinally. The final process step is tape formation, in which the fiber tape is under tension formed into the desired shape and then fixed into a continuous tape structure. During fixation, the thermoplastic fibers melt partially or completely and then solidify.

Developed “Infinity” rCF tape variant without trimming of the tape edges. © 2024 Photo: DITF
Developed “Infinity” rCF tape variant without trimming of the tape edges. © 2024 Photo: DITF


This technology developed at the DITF for the production of highly oriented rCF tapes was used as part of the “Infinity” research project (03LB3006) to demonstrate a sustainable and fiber-friendly recycling cycle for CFRP. Based on the “Infinity” tapes, a composite material was developed that achieved 88 percent of the tensile strength and tensile modulus of a comparable virgin fiber product. In addition, a life cycle analysis showed that the global warming potential is reduced by approx. 49 percent when using pyrolysis fibers and by approx. 66 percent for rCF from production waste.

The findings thus illustrate a way towards true substitution of virgin fiber CFRP with recycled CFRP instead of downcycling to low-orientation materials and the associated loss of mechanical properties.



More News from Deutsche Institute für Textil- und Faserforschung Denkendorf

#Research & Development

DITF send a signal for climate protection

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have successfully implemented extensive investments in photovoltaic systems at their site in Denkendorf. The systems installed on the roofs of the buildings and covered parking lots have a total installed capacity of 840 kilowatt peak (kWp). The DITF invested 1.6 million euros in this with the support of the state of Baden-Württemberg. The system was ceremonially put into operation on September 17, 2025.

#Research & Development

4.2 million Euros for research into textile recycling

Around the world, used textiles are still rarely recycled and pile up into huge mountains of waste. A recent study by the Boston Consulting Group (BCG) drew attention to this problem. However, the low recycling rate is also due to the fact that only a small percentage of used textiles are actually suitable for recycling into high-quality materials and for demanding applications. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are addressing this problem with their research.

#Research & Development

Denkendorf fiber chart revised

A companion during studies and for practical use in the workplace: generations of textile experts have used the Denkendorf Fiber Chart to keep track of all the important characteristic values of textile raw materials. Following the first two editions in the 1970s and 1980s, Denkendorf scientists have comprehensively revised the Fiber Chart. The third edition is now available in digital form for the first time.

#Research & Development

Carbowave: Energy efficiency in carbon fiber production

A new technology uses microwaves and plasma heating to produce carbon fibers in an energy-efficient manner. This means high-strength composite materials can be produced more cheaply and efficiently. The German Institutes of Textile and Fiber Research (DITF) are part of the Carbowave research consortium, which aims to improve and commercialize microwave and plasma-induced carbonization.

More News on Research & Development

#Research & Development

Aachen Summer School: Strengthening German-Korean cooperation in 4D and robotics

The Aachen Summer School has established itself as an important platform for promoting cooperation between RWTH Aachen University and Seoul National University. The focus is on practice-oriented research projects in the field of 4D and robotics technologies, which have been successfully implemented for years at the Institut für Textiltechnik of RWTH Aachen University.

#Research & Development

The Textile Institute marks 100 years with a global expansion drive

Fresh from its highly successful 63rd conference held in Porto, Portugal, from October 7-10, The Textile Institute (TI) will celebrate a major milestone at the ITMA Asia+CITME textile machinery exhibition in Singapore later this month.

#Recycling / Circular Economy

Closing the Loop in the Textile Industry: Value Creation in the State of Brandenburg

How can the state of Brandenburg benefit from a circular textile industry? This question is addressed in the new policy paper "Closing the loop in the textile industry: Value creation in the state of Brandenburg." Based on the „TexPHB“ feasibility study funded by the Brandenburg Ministry of Climate Protection, it shows how textile waste can be integrated into new value chains.

#Research & Development

Better, faster, bio-based: Functional new Plastic alternatives

How can new bio-based and biohybrid materials with improved features be developed faster? Six Fraunhofer institutes are jointly exploring this question in the SUBI²MA flagship project, using an innovative bio-based polyamide developed by Fraunhofer researchers as a model. Its specific properties make it a promising alternative to fossil-based plastics.

Latest News

#ITMA Asia + CITME Singapore 2025

T-CAN – Revolutionizing can transport

In virtually all spinning mills, transporting sliver cans is still done manually. Rising labor costs, lack of operators and increasing quality requirements make this a growing challenge. With T-CAN, Trützschler introduces a practical solution: a fully automated can transport system that will be presented live at ITMA ASIA 2025 in Singapore.

#Nonwovens

Francois Guetat joins Suominen as COO

Francois Guetat brings over two decades of global experience in operations, supply chain, and manufacturing excellence. Most recently, he served as SVP of Integrated Supply Chain at Kalmar, where he led business across sourcing, manufacturing, logistics and strategy. His leadership has been shaped by 22 years at Volvo, where he held key roles in Sweden, USA, and Poland.

#Sustainability

DuPont™ Nomex® plant in Asturias receives ISCC PLUS certification

DuPont announced today that its Nomex® production facility in Tamón, Asturias, has received International Sustainability and Carbon Certification (ISCC PLUS) certification. This achievement underscores DuPont's commitment to advancing its sustainability goals and building capabilities to provide reliable Nomex® solutions from sustainable raw materials worldwide.

#Techtextil 2026

From concept to stage: Submit presentations for the Techtextil Forum and Texprocess Forum 2026 now

Anyone who wants to contribute to shaping the future of the textile industry can submit a presentation for the Techtextil and Texprocess Forum by 15 December 2025. Both stages represent innovation and practical solutions and promote exchange between research and industry. An international Programme Committee selects the contributions and curates a programme on key future topics in the textile sector. From 21 to 24 April 2026, the two leading trade fairs will once again be the centre of global business dialogue in Frankfurt.

TOP