[pageLogInLogOut]

#Research & Development

Original or fake? Counterfeit-proof and unique identification shows authenticity of products

Counterfeit-proof product protection and resilient supply chains are the goals of the Fraunhofer SmartID project. The Fraunhofer Institutes for Applied Polymer Research IAP, for Secure Information Technology SIT and for Open Communication Systems FOKUS are developing a novel marking system that can determine the authenticity of products via smart devices even while being offline, i.e. without access to a database. SmartID will be embedded in existing track & trace infrastructures and can be printed on products or their packaging using commercially available printing processes.

Counterfeit or uncertified products circulate in large numbers in the market, among them FFP2 masks. Consumers often have no ability to verify the authenticity of a product. In the case of counterfeit medical products and pharmaceuticals, cosmetics and even food there can also be serious consequences for health.

The SmartID labeling is designed to help producers, retailers and end customers to identify counterfeit products via smart device.  © Fraunhofer IAP
The SmartID labeling is designed to help producers, retailers and end customers to identify counterfeit products via smart device. © Fraunhofer IAP


Product authentication from the producer to the end customer

Comprehensive product protection can only be achieved through a system that ensures verifiability of product authenticity from the producer through customs, wholesalers and retailers to the end customer. "This is what we are striving for in the SmartID project. Everyone in this chain should be able to authenticate a product securely. We are taking advantage of the fact that many people have a smart device these days", explains Dr. Tobias Jochum, who coordinates the project and works as a specialist in anti-counterfeiting at the Hamburg Center for Applied Nanotechnology CAN, a research division of the Fraunhofer IAP.

In SmartID, each product will be labeled as unique and authentic. To this end, the scientists involved are bringing together materials science expertise with cutting-edge software. Fraunhofer IAP is developing novel materials for counterfeit-proof labeling that can be detected via smart devices. The Fraunhofer Institutes SIT and FOKUS are developing special software for reading and encrypting this physical marking. Further, an app will be developed allowing the customers to verify the product via their smart devices.   



Use of existing track & trace infrastructure, but without database

With their identification, the partners are building on existing track & trace barcodes. SmartID is designed so that QR codes, Data Matrix codes and all other ISO-normed barcodes can be used and read using a smart device. But contrary to the conventional approach, users can also check the authenticity verification without database matching. "This offers several advantages: On the other hand, with SmartID we avoid various IT security and data protection challenges that arise when using a central database, as well as the high costs associated with installing, commissioning and maintaining databases", says Jochum.

In the first phase of the project, the partners are focusing on establishing secure and unique identifiers on product packaging and optimizing processes in terms of costs. One goal here is to print SmartID identifiers on packaging using conventional printing technologies. In further developments, SmartID could also be integrated directly into products.

Strong partners from industry

SmartID is supported by an industrial advisory board that brings different expertise along the entire value chain. The partners include REA Elektronik GmbH, DNV, Domino Printing UK and the Mechanical Engineering Industry Association. "While in the past almost exclusively IT solutions were established, SmartID also takes into account the physical component of counterfeit protection and combines it with the best possible IT security", says Steffen Zimmermann of the Mechanical Engineering Industry Association.



More News from Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

More News on Research & Development

#Research & Development

Award-winning research for sustainable carbon fibre cycles

Sustainable recycling of carbon fibres is possible through targeted electrochemical surface modification, which makes the sizing of carbon fibres resistant to solvolysis. ITA PhD student Sabina Dann was awarded the MSW Award from RWTH Aachen University for her master's thesis on this development. The award ceremony took place on 12 November 2025 in Aachen.

#Research & Development

Kick-off for the Textile Production of the Future: Establishment of a Textile Technology and Development Centre in Mönchengladbach, Germany

The Institut für Textiltechnik (ITA) of RWTH Aachen University, together with its partners, is pleased to announce that it has received approval for its joint initiative, ‘Textile Factory 7.0’. The goal of the project is the establishment of a technology and development centre for the textile industry in Mönchengladbach.

#Research & Development

Bio-based fibers with good flame retardancy

Fibers made from bio-based plastics reduce dependence on fossil raw materials and promote the circular economy. The covalent bonding of flame-retardant additives can open the way for these fibers to enter the mass market.

#Research & Development

Exchange data between textile companies openly, securely and cost-effectively without a central platform – ITA makes it possible

The Institut für Textiltechnik (ITA) of RWTH Aachen University has launched a new demonstrator for an open and secure data space in the textile industry at the Digital Innovation Centre Europe (DICE). For the first time, the demonstrator shows directly and clearly how companies can share their data securely with each other without the need for a central platform. Data exchange is based on shared, freely usable technical foundations.

Latest News

#Spinning

Perfect quality through collaboration: Machinery from Trützschler, Toyota and Murata at Zirve Tekstil

In today’s textile industry, excellence is not achieved by chance – it’s the result of deliberate decisions, technical expertise, and the courage to go beyond conventional paths. The Turkish company Zirve Tekstil has done just that: by combining the best technologies from Trützschler, Toyota and Murata, they’ve created a production setup that delivers outstanding yarn quality – recognized worldwide.

#Associations

Engineering depth and diversity for composites

Airbond is the latest member of the British Textile Machinery Association (BTMA) to receive recognition for contributions to the composites industry. The engineering firm based in Pontypool, South Wales, has just received the Make UK Energy and Sustainability Award for its Lattice 3D Printing project.

#Technical Textiles

Carrington Textiles and Pincroft unite defence expertise at Enforce Tac

Carrington Textiles and Pincroft return to Enforce Tac for the third time, presenting a co-branded stand that brings together textile manufacturing and specialist finishing under one roof.

#Yarns

Eastman introduces Naia™ Lyte at Première Vision Paris, marking a major breakthrough in fiber tenacity for cellulose acetate filament yarn performance

Eastman unveils Naia™ Lyte, a new cellulose acetate filament yarn that represents an important milestone in performance for lightweight and premium fabrics, at Première Vision Paris. Presented for the first time to the international fashion and textile community, Naia™ Lyte expands the capabilities of acetate yarn by introducing enhanced tenacity, unlocking new creative and technical possibilities for designers, mills and brands.

TOP