[pageLogInLogOut]

#Research & Development

Original or fake? Counterfeit-proof and unique identification shows authenticity of products

Counterfeit-proof product protection and resilient supply chains are the goals of the Fraunhofer SmartID project. The Fraunhofer Institutes for Applied Polymer Research IAP, for Secure Information Technology SIT and for Open Communication Systems FOKUS are developing a novel marking system that can determine the authenticity of products via smart devices even while being offline, i.e. without access to a database. SmartID will be embedded in existing track & trace infrastructures and can be printed on products or their packaging using commercially available printing processes.

Counterfeit or uncertified products circulate in large numbers in the market, among them FFP2 masks. Consumers often have no ability to verify the authenticity of a product. In the case of counterfeit medical products and pharmaceuticals, cosmetics and even food there can also be serious consequences for health.

The SmartID labeling is designed to help producers, retailers and end customers to identify counterfeit products via smart device.  © Fraunhofer IAP
The SmartID labeling is designed to help producers, retailers and end customers to identify counterfeit products via smart device. © Fraunhofer IAP


Product authentication from the producer to the end customer

Comprehensive product protection can only be achieved through a system that ensures verifiability of product authenticity from the producer through customs, wholesalers and retailers to the end customer. "This is what we are striving for in the SmartID project. Everyone in this chain should be able to authenticate a product securely. We are taking advantage of the fact that many people have a smart device these days", explains Dr. Tobias Jochum, who coordinates the project and works as a specialist in anti-counterfeiting at the Hamburg Center for Applied Nanotechnology CAN, a research division of the Fraunhofer IAP.

In SmartID, each product will be labeled as unique and authentic. To this end, the scientists involved are bringing together materials science expertise with cutting-edge software. Fraunhofer IAP is developing novel materials for counterfeit-proof labeling that can be detected via smart devices. The Fraunhofer Institutes SIT and FOKUS are developing special software for reading and encrypting this physical marking. Further, an app will be developed allowing the customers to verify the product via their smart devices.   



Use of existing track & trace infrastructure, but without database

With their identification, the partners are building on existing track & trace barcodes. SmartID is designed so that QR codes, Data Matrix codes and all other ISO-normed barcodes can be used and read using a smart device. But contrary to the conventional approach, users can also check the authenticity verification without database matching. "This offers several advantages: On the other hand, with SmartID we avoid various IT security and data protection challenges that arise when using a central database, as well as the high costs associated with installing, commissioning and maintaining databases", says Jochum.

In the first phase of the project, the partners are focusing on establishing secure and unique identifiers on product packaging and optimizing processes in terms of costs. One goal here is to print SmartID identifiers on packaging using conventional printing technologies. In further developments, SmartID could also be integrated directly into products.

Strong partners from industry

SmartID is supported by an industrial advisory board that brings different expertise along the entire value chain. The partners include REA Elektronik GmbH, DNV, Domino Printing UK and the Mechanical Engineering Industry Association. "While in the past almost exclusively IT solutions were established, SmartID also takes into account the physical component of counterfeit protection and combines it with the best possible IT security", says Steffen Zimmermann of the Mechanical Engineering Industry Association.



More News from Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

More News on Research & Development

#Research & Development

More safety and comfort for protective clothing thanks to auxetic fabrics

When everyday materials are pulled, they stretch or elongate in the direction of the pull and become narrower in cross-section. We can also observe this property in two-dimensional textiles. Auxetic structures behave differently here. They have the striking property of not changing under tensile stress or even increasing their width or thickness. These properties are advantageous, for example, in protective textiles or textile filter media. The DITF are researching auxetic fabrics for various applications.

#Research & Development

Fraunhofer CCPE presents the “Monomaterial Design Set” – Innovative solutions for circular product design

Composite materials made from different types of plastic often extend the lifetime of products but make recycling more difficult in the circular economy. That is why Fraunhofer CCPE has developed the “Monomaterial Design Set”. This new approach helps to reduce the variety of plastics used in durable products and offers circular solutions for designers and product developers.

#Research & Development

How innovations drive BASF’s success

“Innovation has always been part of BASF’s DNA. Especially in these volatile times, it is crucial to leverage our innovative strength to develop competitive solutions that differentiate us as a company in our markets and give us a competitive edge,” said Dr. Stephan Kothrade, Member of the Board of Executive Directors of BASF and Chief Technology Officer, at the company’s Research Press Briefing held today. To achieve this, BASF implemented its “Winning Ways” strategy about a year ago with the clear goal of becoming the preferred chemical company to enable its customers’ green transformation.

#Research & Development

Small tolerances, big impact and a recyclable alternative to elastane

ITA Master's student Janne Warnecke investigated tension differences over the fabric width in the weaving process and thereby contributed to quality assurance; ITA Bachelor's student Jasmin Roos found a basis for the development of recyclable yarns and textiles. For these developments, they were awarded the Walter Reiners Foundation's Promotion and Sustainability Prizes on 27 November. Peter D. Dornier, Chairman of the Walter Reiners Foundation, presented the awards at the Aachen-Dresden-Denkendorf International Textile Conference (ADD-ITC) in Aachen, Germany.

Latest News

#People

Happy Holidays!

Dear reader, the year 2025 is drawing to a close. We are entering what we hope will be a peaceful holiday season, spending time with our families and taking a moment to pause and reflect. We hope we have been able to support you once again this year with relevant news and articles, and we look forward to surprising you with many innovations in the coming year. Enjoy the festive season, stay healthy, and we wish you a happy and joyful holiday season.

#Weaving

Lindauer Dornier announces leadership transition in weaving machine business

After more than ten successful years at Lindauer DORNIER GmbH, Mr Wolfgang Schöffl will leave the family-owned company at the end of the year to enter well-deserved retirement.

#Heimtextil 2026

Texpertise Focus AI: Messe Frankfurt puts Artificial Intelligence centre stage at its international textile and apparel trade fairs

Under the banner 'Texpertise Focus AI, Messe Frankfurt will place a strong emphasis on Artificial Intelligence (AI) across its international textile and apparel trade fairs from 2026 onwards, setting a future-shaping signal for the industry. The initiative highlights the responsible use of AI along the entire textile value chain, from fibre production to the point of sale. The programme will launch at Heimtextil in Frankfurt in January 2026.

#Technical Textiles

Autoneum and Polestar set new benchmarks for passenger experience and sustainability

As the global market leader in sustainable acoustic and thermal management, Autoneum is a key supplier of interior and exterior components for the highly anticipated Polestar 5 model. The successful collaboration between Autoneum and Polestar marks a significant milestone in sustainable automotive engineering: the electric grand tourer sports car features several innovations in lightweight, fully recyclable polyester-based components that ensure a superior driving experience. Polestar 5 was revealed at the IAA Mobility 2025 in Munich and is available in 24 markets.

TOP