[pageLogInLogOut]

#Research & Development

High-Tech Fashion – art and science for the clothes of tomorrow

For most people, the word "fashion" evokes thoughts of cuts, colors and patterns - but why not of live evaluations of vital functions or training sessions for rehabilitation patients? Up to now, products of the fashion industry have been largely analogous. The project Re-FREAM, however, was created to design smart clothes in the digital area. Here, researchers and artists work side by side, developing innovative and sustainable ideas and implementation options for the fashion industry, while simultaneously providing impulses for user-oriented synergies between textiles and technology.

The writer Maxim Gorki summed up the connection between two social spheres that were long believed to be irreconcilable: "Just as science is the intellect of the world, art is its soul". In the project Re-FREAM they are connected because fashion is not limited to the decision of the external, it is directly afflicted with sociological, technological and ecological world views. It is less and less sufficient to present only the beautiful, because the dark sides of the fashion industry must also be uncovered and countered with sustainable production cycles and fair working conditions. It is precisely this rethinking and redesigning of processes, production methods, but also of functionality and traditions in the world of fashion that is part of the Re-FREAM project.

The aim is to create an interaction between fashion, design, science and urban manufacturing in order to combine creative visions with sustainable technological solutions. In teams, artists and scientists developed projects together and then presented their innovative aesthetics at the virtual Ars Electronica Festival 2020.

The cooperation with Fraunhofer IZM's scientists opens up entirely new technological possibilities for artists: Microelectronics not only serves as a fashion accessory but is also brings new functions to clothing. With the help of integration technologies, clothing can be integrated into networks and textile-integrated sensor technology can be used, which opens up perspectives of wearable applications in the field of e-health.

One difficulty that Fraunhofer researchers are facing is the electronic contact points between electronics and textiles, because these must be manufacturable on an industrial scale and function reliably under typical textile mechanical stress and washing without any loss of performance. The electronic modules are a further challenge. At Fraunhofer IZM, the electronic components are miniaturized to such an extent that they do not stand out in the garment. The connecting conductor tracks are finally laminated or embroidered onto the fabrics.

Each sub-project in Re-FREAM is a unique joint effort, a fact that reflects the versatility of the cooperation partners. The Italian designer Giulia Tomasello, for example, wants to reveal taboos around female health in her project "Alma" and realize a monitoring of the vaginal flora. The team consisting of designers, an anthropologist and Fraunhofer researchers is developing underwear with an integrated pH sensor, designed to enable a non-invasive diagnosis of bacterial vaginosis and fungal diseases in everyday life and prevent serious inflammation.

Miniaturized, reliable and manufactured with circular design in mind: the
Miniaturized, reliable and manufactured with circular design in mind: the "Alma" subproject has produced a biosensor for monitoring female health © Giulia Tomasello


In the gusset of the underwear, the reusable biosensor collects data and transmits them to a module measuring approximately 1 cm². Thanks to a modular design, the microcontroller can be easily removed from the textiles. The textile sensor, too, can be removed from the underwear. In addition to the technological solution, aesthetic requirements are another main focus. Other potential applications would be the monitoring of abnormal uterine bleeding as well as menopause. "Through close cooperation with the artists, we have gained very special insights into the user's perspective, and they in turn into that of application-oriented technologies. We have always challenged each other and have now found a solution that combines medical technology, wearables and a circular production method to empower women," says Max Marwede, who provided technical support for "Alma" at Fraunhofer IZM.



Fraunhofer researchers and designers combine style with functionality: in this case with clothing that measures muscle activity and thus optimizes rehabilitation processes © Jessica Smarsch
Fraunhofer researchers and designers combine style with functionality: in this case with clothing that measures muscle activity and thus optimizes rehabilitation processes © Jessica Smarsch


In the "Connextyle" project around designer and product developer Jessica Smarsch, the team also focuses on developing user-oriented garments: The tops, which are equipped with textile printed circuit boards and laminated EMG sensors, measure muscle activity and thus optimize rehabilitation processes for patients. An app provides visual feedback from the collected data, generates reports on the healing process and makes it easier for therapists to adapt the measures ideally.

Soft Robotics are the key point in the "Lovewear" project, because here inclusive underwear was developed, which is intended to help people with physical limitations in particular to explore their own intimacy and develop a greater awareness of their own body. Through interaction with a connected pillow, which functions as an interface, compressed air inserts are activated in the lace fabric. Instead of the commonly used silicon-based materials, Soft Robotics are made of textiles and thermoplastic materials. The researchers thus avoid the long curing process of silicone-based approaches and enable faster and more cost-effective mass production with available textile machines.

Particularly challenging and at the same time fruitful is the collaboration in creating sustainable and circular production designs in fashion. Ecological principles are taken into account at the design stage, minimizing negative environmental impacts throughout the product life cycle. This includes the reliability of the component contacts, the length of time the sensors adhere to the textile, the choice of materials and the modular design for reuse of the microcontrollers. However, the teams do not create individual pieces - they want to show that the path to high-tech fashion can also be an environmentally friendly one. They also worked on circular business models that fit the sustainable mission of the projects.

Thus Fraunhofer IZM’s expertise in the fields of e-textiles and circular design represents a considerable added value in the Re-FREAM project. With further investigations on suitable conductive materials, the researchers are currently developing sensory textiles and textile-suitable interconnection technologies. They are also working on thermoplastic substrates that can be integrated into almost any textile.

Re-FREAM is part of the STARTS (Science + Technology + Arts) program, which is funded as an initiative of the European Commission within the Horizon 2020 research and innovation program. 

Suitable for mass production: Textile-based soft robotics for strengthening one s own body awareness © Witsense
Suitable for mass production: Textile-based soft robotics for strengthening one s own body awareness © Witsense







More News from Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

More News on Research & Development

#Research & Development

New DIN SPEC assesses environmental impact of textile fragments in soil

Textile products made from synthetic fibres, finished fabrics or dyed materials release fibre fragments into the environment at every stage of their life cycle. With the new DIN SPEC 19296, Hohenstein has developed a standardised testing method to analyse how these fragments behave in soil under natural conditions. Until now, little was known about their environmental behaviour or potential ecological effects once released.

#Research & Development

Solid Air Dynamics wins second place at RWTH Innovation Award

On 30 January, RWTH spin-off Solid Air Dynamics was awarded second place in the RWTH Innovation Awards for its research in the field of aerogel fibres. Manufactured from renewable raw materials, aerogel fibres offer outstanding thermal insulation, are extremely lightweight and completely biodegradable, and can consist of over 90 per cent air.

#Research & Development

Testing and research laboratory ensures safe and more sustainable products worldwide

For 80 years, Hohenstein has stood for independent testing, scientific expertise and practical solutions. Today, the testing and research service provider supports manufacturers and brands worldwide in making textiles, hardlines and medical devices safe, more sustainable and market-ready – thereby building trust among consumers. With an international presence and interdisciplinary expertise, Hohenstein supports its customers from production through to market launch, helping them navigate an environment of growing regulatory and societal demands.

#Research & Development

Award-winning research for sustainable carbon fibre cycles

Sustainable recycling of carbon fibres is possible through targeted electrochemical surface modification, which makes the sizing of carbon fibres resistant to solvolysis. ITA PhD student Sabina Dann was awarded the MSW Award from RWTH Aachen University for her master's thesis on this development. The award ceremony took place on 12 November 2025 in Aachen.

Latest News

#Raw Materials

Esquel Group adds two new extra-long staple cotton varieties approved

Esquel Group’s Xinjiang Research & Development Center has successfully developed two new Sea Island cotton (Extra-Long-Staple cotton, ELS cotton) varieties named “Yuan Loong 37” and “Yuan Loong 42,” which have been officially approved and granted registration numbers. Both varieties have also obtained Plant Variety Rights certificates, marking another significant breakthrough for the Group in cotton breeding and commercial application.

#Weaving

Itema America acquires Palmetto Loom Reed, strengthening local manufacturing and service in the U.S.

Itema America, the U.S. subsidiary of Italy-based Itema Group, has acquired – through an Assets Purchase Agreement – Palmetto Loom Reed, a Greenville, South Carolina-based manufacturer of weaving reeds and one of the last remaining domestic producers of these precision components in the United States.

#Recycled_Fibers

Reju announces site selection for French Regeneration Hub in Lacq advancing Europe’s circular textile infrastructure

Reju, the textile-to-textile regeneration company based in France, announces the site selection for an industrial sized Regeneration Hub, in Lacq, in the Pyrénées-Atlantiques, on the Induslacq platform. Reju, a Technip Energies owned company, is deepening its roots in France through the development of this new Regeneration Hub.

#Functional Fabrics

lululemon introduces Unrestricted Power™ — A new sensation for strength training

lululemon (NASDAQ: LULU) has unveiled Unrestricted Power™, a new innovation platform engineered for heavy lifts and demanding gym sessions. The assortment, which launches in North America, is backed by thousands of hours of research and development, providing secure support without compromising comfort and mobility, enabling a distraction-free fit built to match every move.

TOP