[pageLogInLogOut]

#Raw Materials

New meta-study highlights that hydrolysis prevents the formation of persistent PLA microplastics in the environment

A systematic review of published scientific literature conducted by HYDRA Marine Sciences finds that in the presence of water or humidity, the bioplastic polylactic acid (PLA) will fully hydrolyze, and no persistent nano- or microplastics will remain or accumulate in the environment.

A new meta-study report commissioned by Holland Bioplastics, an association advancing bioplastics knowledge worldwide, concludes that the fundamental characteristics of polylactic acid (PLA), a biobased polymer made entirely from fermented plant sugars, and the hydrolysis process indicate that PLA does not produce persistent microplastics. The literature research, completed by HYDRA Marine Sciences, a research laboratory, shows that unlike non-biodegradable polymers, which will persist and permanently accumulate as nano- or microplastics in the environment, PLA will hydrolyze into molecules of ever-smaller size, becoming soluble in water and eventually fully biodegraded.

The report’s findings were drawn from an initial scan of over 30,000 reports, of which 500 were identified by HYDRA as relevant and of sufficient quality for deeper review. The research confirmed that the environmental degradation of PLA is mainly driven by hydrolysis, an abiotic process that occurs in the presence of moisture or humidity. As long as these conditions prevail, the molecular weight and size of any PLA objects or fragments will continually decrease via hydrolysis, at a rate determined by temperature, until the polymer chains are so short that the material becomes soluble in water. These soluble substances, oligomers and lactic acid monomers, will subsequently be biodegraded by microorganisms into biomass, water, and carbon dioxide.

Neat PLA and its oligomers are also widely recognized as non-toxic substances. Lactic acid, the monomer building block of PLA, is classified as Generally Recognized as Safe by the US Food and Drug Administration and European Union (EU). Many PLA grades comply with long-standing global legislation for food contact requirements in the US and EU. Additionally, specific grades of PLA have been approved and used for decades in medical applications such as sutures, tissue scaffolds, and drug administration substrates. After use in the body, these PLA polymers are safely absorbed and bioassimilated by the human body.

“As a society, we must work to end the plastics crisis from both ends: developing collection and waste processing infrastructure and products that are compostable, reusable, and recyclable while simultaneously choosing more responsible materials for the products we rely on today,” said Erwin Vink, Board Member from Holland Bioplastics. “These findings confirm that as we are growing access to waste infrastructure globally if PLA is leaked into the environment, it will not have the long- term impact as a microplastic that we know occurs with non-biodegradable polymers.”

“The meta-study shows that in contrast to non-biodegradable plastic, which will persist and permanently accumulate as micro- and nanoplastics in the environment, PLA in the environment will not leave persistent pollution as long as humidity and water are present,” said Christian Lott, Managing Director, HYDRA Marine Sciences. “However, we must be aware that it does not belong in the environment, and it is critical that we do not use these attributes to encourage littering or slow the development of global waste infrastructure. Degradation of any material must be balanced with accumulation, or how much material is entering the environment, in order to reduce harm to the environment.”

Producing the biobased polymer, PLA, starts with plants as they sequester atmospheric carbon dioxide in sugar molecules through the process of photosynthesis. Plant sugars are then fermented using microorganisms to produce the monomer lactic acid, a safe, non-toxic substance that is also used to preserve foods and is produced by our bodies during physical exertion. This lactic acid is then polymerized into the polylactide (PLA) biopolymer used to make a wide range of products like cups, cutlery, bin liners, or flexible food packaging. Because PLA is made from plants that absorb carbon dioxide (CO2) and water found in nature, when it is composted, hydrolyzed, or biodegraded, the CO2 and water will return back to nature, making the process circular.

To follow Holland Bioplastics and its member companies that supported this study, Futerro, Total- Energies Corbion, and NatureWorks, as they continue to make strides toward the global expansion of bioplastics for a circular economy, visit hollandbioplastics.nl.

Mechanisms for PLA Degradation: In the presence of water (1), PLA undergoes hydrolysis (2) as a pure chemical process of polymer degradation during which low molecular weight intermediates (3) such as oligomers and lactic acid monomers are produced. These become soluble and can be biodegraded (4). Microbes take up these oligomers and monomers as food (5) and use them to build up biomass (6) and as energy for metabolism. Ultimately, this leads to mineralization (7) of the original polymer carbon into carbon dioxide, methane, and water  © 2024 Holland Bioplastics
Mechanisms for PLA Degradation: In the presence of water (1), PLA undergoes hydrolysis (2) as a pure chemical process of polymer degradation during which low molecular weight intermediates (3) such as oligomers and lactic acid monomers are produced. These become soluble and can be biodegraded (4). Microbes take up these oligomers and monomers as food (5) and use them to build up biomass (6) and as energy for metabolism. Ultimately, this leads to mineralization (7) of the original polymer carbon into carbon dioxide, methane, and water © 2024 Holland Bioplastics



More News from TEXDATA International

#Recycling / Circular Economy

textile.4U publishes special edition “Top 100 Textile Recycling Companies 2025”

With a comprehensive 176-page special edition, textile.4U is dedicating its latest issue entirely to one of the most dynamic and influential topics in today’s textile industry: textile recycling. The new issue, published exclusively in high-quality print, presents the Top 100 textile recycling companies researched and selected by TexData – organizations that already play a key role in the transition to circular textiles or are expected to have a significant impact in the near future.

#Recycling / Circular Economy

Responsible Textile Recovery Act of 2024 signed by Governor

Senator Josh Newman (D-Fullerton) is proud to announce that Senate Bill 707 (SB 707), the Responsible Textile Recovery Act of 2024, has been signed into law by the Governor of California, Gavin Newsom. This groundbreaking legislation establishes the country’s first Extended Producer Responsibility (EPR) textile recycling program, marking a significant step forward in the state’s efforts to combat waste and promote sustainability.

#Textiles & Apparel / Garment

Modtissimo promotes sustainability with 28 coordinates in the Green Circle

Modtissimo is proving more and more to be a textile and clothing show that delivers the latest innovations in the area of sustainability, with the iTechStyle Green Circle being the main showcase for companies' creations. In this 60+4 edition, taking place on 12 and 13 September, 28 coordinates will be exhibited in a section organised by CITEVE and curated by Paulo Gomes.

#Europe

The EU and Egypt team up to mobilise private sector investments at Investment Conference and sign a Memorandum of Understanding underpinning €1 billion in macro-financial assistance for Egypt

At the EU-Egypt Investment Conference, co-organised by the EU and the Government of Egypt on 29-30 June, the EU and Egypt are teaming up to intensify private sector investments in Egypt. They are also signing a Memorandum of Understanding (MoU) for the disbursement to Egypt of up to €1 billion in Macro-Financial Assistance.

More News on Raw Materials

#Natural Fibers

ICAC to collaborate with Uzbekistan and Bizpando on regenerative agriculture

The Government of Uzbekistan has allocated 55,000 hectares of land to implement a regenerative agriculture program for cotton as part of a collaborative project with the International Cotton Advisory Committee (ICAC) and Bizpando, a company with a a blockchain-based internet platform designed to ensure supply chain compliance.

#Natural Fibers

World Cotton Trade declined 4.1% in 2024/25, according to ICAC's 2025 World Cotton Trade Report

Washington, DC — The International Cotton Advisory Committee (ICAC) has released the 2025 World Cotton Trade Report, which covers trade developments in raw cotton since 1980. An annual publication, it provides analysis of world trade by region; import/export projections by country; matrices of trade flows; and seasonal estimates of export commitments to date.

#Natural Fibers

BCI warns against ‘dangerous dilution’ of EU corporate directives

The approval of the European Commission’s Omnibus I proposal by the European Parliament’s Committee on Legal Affairs, accepting controversial changes to key sustainability directives is of great concern. These changes, namely to the Corporate Sustainability Reporting Directive (CSRD) and the Corporate Sustainability Due Diligence Directive (CSDDD), threaten to significantly dilute business reporting and due diligence obligations.

#Natural Fibers

ICAC releases 2025 edition of the Specialty Cotton Report

The ICAC has released the newest edition of the Specialty Cotton Report, a free publication that was created in 2023 to highlight the many new "identity cotton programs" that have been emerging around the world, in addition to covering long-staple (LS) and extra-long staple (ELS) cotton. For the ICAC's purposes, "specialty cotton" refers to any cotton that is remarkable in some way — LS, ELS, or falls under a specific identity program.

Latest News

#ITMA Asia + CITME Singapore 2025

Innovation and customer proximity – KARL MAYER’s clear focus makes an impression

ITMA ASIA in Singapore was a resounding success for KARL MAYER, exceeding all expectations. The company welcomed visitors from 39 countries and held around 570 expert discussions. Most guests came from India, followed by China, Indonesia and Pakistan. The exchange with them was both well-founded and targeted. Conversation topics ranged from investment projects and new technologies to opportunities for cooperation and business expansion.

#Recycling / Circular Economy

Nanollose creates the world’s first wearable fashion garment made from liquid waste

Australian-based biomaterial technology company Nanollose Ltd (ASX: NC6) has created the world’s first wearable garment using the company’s eco-friendly Tree-Free Rayon fibre (NullarborTM), sourced from sustainable coconut waste.

#Research & Development

Catching heart disease early with AI-based sensor system

It slips on like a normal vest: Fraunhofer IZM has created a smart sensor system in cooperation with the Charité and the Technical University of Berlin. The vest records a vast array of cardiovascular parameters, which an AI-based system uses to support medical diagnostics and spot potentially dangerous developments.

#ITMA Asia + CITME Singapore 2025

Singapore edition of ITMA ASIA + CITME makes successful presentation

The region’s leading textile and garment technology exhibition, ITMA ASIA made a successful return to Singapore after two presentations in 2001 and 2005.

TOP